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Abstract

In this paper we offer several new insights and techniques for
effectively using color and texture to simultaneously convey
information about multiple 2D scalar and vector distributions, in a
way that facilitates allowing each distribution to be understood
both individually and in the context of one or more of the other
distributions.  Specifically, we introduce the concepts of:

- ‘color weaving’ for simultaneously representing information
about multiple co-located color encoded distributions, and

- ‘texture stitching’ for achieving more spatially accurate multi-
frequency line integral convolution representations of combined
scalar and vector distributions.

The target application for our research is the definition, detection
and visualization of regions of interest in a turbulent boundary
layer flow at moderate Reynolds number.  In this work, we
examine and analyze streamwise-spanwise planes of three-
component velocity vectors with the goal of identifying and
characterizing spatially organized packets of hairpin vortices.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism.

Additional Keywords: flow visualization, line integral
convolution, multi-variate data visualization, color, texture.

1. Introduction

Researchers in the turbulence community have long been
interested in developing a deeper understanding of the key
physical mechanisms in turbulent flows.  Of particular interest is
the question of how eddies contribute to drag, which, if
understood, could enable the development of strategies to reduce
drag by controlling the generation, scale and/or organization of
eddies in the flow.  This would have a major impact on many
industries including aerospace, transportation, energy, and
chemical processing.  For example, reductions in turbulent skin-
friction drag over aircraft would result in significant decreases in
fuel usage – lowering fuel costs, increasing aircraft range and
reducing pollutant and greenhouse gas emissions.  Efforts to

achieve a fundamental understanding of turbulent flows remain
limited mainly because of a lack of understanding of the non-
linear interactions that occur between the vortices that make up
the motion.  Since it is not computationally feasible to
numerically simulate a wide range of eddy scales, researchers who
are interested in probing these questions must rely on
experimental methods to further their understanding.

Stereoscopic particle image velocimetry (PIV) is a technique that
can be used to experimentally measure instantaneous components
of a velocity field in a plane of a turbulent boundary layer in a
moderate to high Reynolds number flow.  Along with the
experimentally generated vector field, values of vorticity,
Reynolds shear stress, and swirl strength can be mathematically
derived and are important in characterizing potential ‘regions of
interest’.  In turbulent boundary layers, various theories have
indicated that hairpin shaped vortices cause drag by producing
Reynolds shear stress, and that this process may be enhanced
when multiple hairpins travel together with similar speeds as a
packet.  In streamwise-spanwise planes parallel to the boundary
layer surface, the packets can be characterized by zones of
uniform but low streamwise velocity containing areas of high
negative Reynolds shear stress and falling between cores of strong
positive and negative vorticity [Ganapathisubramani et al. 2003].
Because the process of knowledge discovery related to this
application is predicated on the ability to achieve an integrated
understanding of the individual contributions of each variable and
of how the variables inter-relate with each other, developing
effective multivariate visualization methods is of critical
importance to facilitating the understanding and analysis of results
from the PIV experiments.

In this paper, we describe two techniques that we have recently
developed for the purposes of more effectively visualizing multi-
valued flow data.  The first, and most significant, is a ‘color
weaving’ algorithm that combines individual threads of multiple
single-hue-encoded co-located scalar distributions, computed over
a common vector field, to form a multi-colored line integral
convolution tapestry in which multiple color combinations are
represented explicitly via adjacent lines in the high resolution
texture rather than through the compositing of multiple
continuously defined color overlays   The second approach we
describe involves the use of ‘texture stitching’ to achieve a more
precise depiction of the spatial extents of discrete regions
characterized by spatial frequency differences in a multi-
frequency line integral convolution image.

Both approaches were applied to the visualization of PIV data
obtained in a wind tunnel turbulent boundary layer at Reynolds
number Rθ = 2500 (Reτ = δUτ/ν = 1060) at a wall-normal location
nominally in the logarithmic region (z+ = zUτ/ν = 98).  Here z is
the distance normal to the wall, δ is the boundary layer thickness,
Uτ is the wall shear velocity, and ν is the kinematic viscosity of
the fluid.  The vector fields used to generate the LIC textures were
obtained by subtracting the mean streamwise velocity from the in-
plane velocity components.  Swirl is characterized by the quantity



λciωz/|ωz|, where λci is the magnitude of the imaginary part of the
eigenvalue of the local velocity gradient tensor and ωz is the in-
plane vorticity.

The paper is organized as follows.  In section 2, we briefly discuss
related previous work in the field of texture-based flow
visualization and multivariate visualization.  We then describe the
‘color weaving’ algorithm in section 3, and the texture stitching’
algorithm in section 4.  In section 5 we show results obtained
using a combination of both techniques.  Finally, we summarize
and conclude in section 6.

2. Previous Work

2.1 Texture-Based Flow Visualization

Textures have traditionally been a popular and effective method
for representing vector and scalar fields.  In pioneering work, van
Wijk [1991] introduced the concept of ‘spot noise’, a texture
constructed from weighted and randomly positioned spots
deformed in accordance with the direction of flow. Cabral and
Leedom [1993] shortly afterward introduced line integral
convolution (LIC), a versatile and widely-used technique in which
intensities in an input texture are convolved along streamlines
defined by an accompanying vector field to produce a texture that
is highly correlated in the flow direction.  Stalling and Hege
[1995], in the Fast-LIC algorithm, achieved an order of magnitude
increase in the efficiency of the LIC algorithm by taking
advantage of coherence along streamlines. This results in the
computation of the output texture being streamline oriented, not
pixel oriented.

In traditional LIC images, the direction of movement in a flow is
ambiguous, and animation is required to make that information
explicit.  However Wegenkittl et al. [1997] introduced a technique
called Oriented Line Integral Convolution (OLIC) that addresses
this issue.  In essence, the OLIC algorithm works by taking as
input a sparse texture resembling ink droplets on a page and using
a ramp-like convolution kernel to smear the droplets according to
the vector field, resulting in a collection of streaks in which
intensity increases from tail to head.  Computation time for that
method was significantly reduced with the introduction of Fast
Oriented Line Integral Convolution (FROLIC) [Wegenkittl and
Groller 1997].  More recently, in another approach similar to
OLIC, Sanna et al. [2001] propose a Thick Oriented Stream Lines
(TOSL) method, in which the orientation of a flow is depicted by
cyclically increasing the luminance along calculated streamlines.

Shen, Johnson, and Ma [1996] added color to LIC images through
the use of simulated dye advection.

Multiple frequency input textures were first used with LIC by Kiu
and Banks [1996], to incorporate indications of velocity
magnitude.  In their method, a single, composite input texture is
constructed from multiple noise distributions, which are assigned
to discrete regions defined by specific intervals of velocity
magnitude, such that higher spatial frequency patterns are used in
the higher velocity regions, and the LIC algorithm is run on this
input.  The length of the filter kernel, which defines the region of
the input texture over which the convolution that determines the
output intensity at each point is performed, is also varied in
proportion to the magnitude of the velocity of the flow at the
corresponding point.

Ware and Knight [1995] earlier proposed the use of Gabor
functions to create texture-like images of flow data in which

information is encoded along the perceptually significant texture
dimensions of scale, orientation and contrast.

Research has also recently been done in representing scalar values
with texture-based vector field representations such as LIC
through the use of bump mapping [Sanna and Montrucchio 2000]
and contrast enhancement [Sanna et al. 2002].  These techniques
essentially enable the visualization of additional scalar values
without requiring the use of color.

2.2 Multivariate Visualization

Healey and Enns [1998] have contributed methods to use texture
elements on underlying 3D height fields to visualize multivariate
data.  They combine texture dimensions of height, density, and
regularity along with perceptually uniform colors to increase the
number of attributes that can be simultaneously represented.

Weigle et. al [2000] propose a texture generation technique, based
on the layering of patches of oriented slivers, which uses
orientation and luminance to encode information about multiple
overlapping scalar fields.

Laidlaw et. al [1998] showed how shape, orientation, and color
attributes of ellipsoids could be used to represent multivariate
components in diffusion tensor images of the mouse spinal cord.
In addition, they demonstrated a method for representing multi-
valued data inspired by the brushing and layering techniques used
in oil painting.  Similarly inspired by concepts from painting,
Kirby, Marmanis and Laidlaw [1999] showed how different sized
icons, color, elongated ellipses, and layering could be used to
portray multivariate data from 2D compressible flows.

3. Color Weaving

With few exceptions, the use of color with LIC has traditionally
been limited to the simplest of color compositing operations in
which a LIC texture image is in effect overlaid with a single
continuous semitransparent color wash image, with the resulting
effect that blacks are left black and the whites are shifted toward
the specified hue at each point.  While effective for conveying a
single scalar distribution in the context of the flow, this post-
process method does not allow for the effective simultaneous
representation of multiple scalar fields, due to the perceptual
difficulty of and inherent ambiguity in color decomposition
(figure 1).

As an alternative, we propose a technique in which multiple
colors are allowed to coexist on neighboring streamlines, resulting
in multicolored images that resemble a tapestry woven with
different colored threads (figure 2).

We begin by selecting several highly saturated and perceptually
iso-luminant colors using the technique suggested by Kindlmann
et al. [2002].  As luminance plays a primary role in how features
are perceived [Ware 2000], selecting base colors that are as
perceptually uniform as possible helps to achieve a final image in
which similar concentrations are represented with reasonably
equivalent  prominence across the multiple distributions.
Additionally, selecting colors that are relatively equivalently
discriminable [Healey 1996] reduces the potential for ambiguous
or misleading representations. We then use each base color to
define a corresponding two-dimensional colormap, in which
saturation increases along the horizontal axis and value increases
in the vertical direction (figure 4).  Each scalar distribution is
associated with a unique colormap.



Figure 1:  Four artificially defined, mutually overlapping regions,
overlaid on a LIC image.  The color combinations in the overlap
regions are obtained by averaging in RGB colorspace.

Figure 2:  The same four regions, represented across the same LIC
image via color weaving.  Note the continuity of color along
individual streamlines within each region, and the ability to
accurately perceive combinations of component colors in the areas
of high overlap (characterized by the presence of three or more
layers).

Figure 3:  Three close-up excerpts from the overlap image shown
in figure 2.  Region combinations represented in each excerpt are:
Top: background, orange only, green only and orange + green
overlap.  Middle: blue only, blue + orange overlap, blue +
magenta overlap, and blue + orange + magenta overlap.  Bottom:
orange + magenta everywhere, partially overlapped by blue,
partially overlapped by green, and partially overlapped by both
blue and green.

Figure 4:  Left: A suite of two-dimensional colormaps. Right: the
results of using each colormap to represent, over the same LIC
texture, a simple scalar distribution that is increasing in value
from left to right.



Figure 5:  A composite ‘color woven’ image of an experimentally acquired PIV dataset in which we simultaneously highlight areas of
significant positive vorticity (red), negative vorticity (blue), strongly negative Reynolds shear stress (green), and high swirl strength
(orange or magenta, depending on the direction of the swirl).



We introduce color on a streamline-by-streamline basis during the
computation of the LIC image.  At each pixel along a streamline
we define the final image color using a 3D color table lookup.
The first index defines the hue, or the choice of which 2D
colormap to perform the lookup in.  Within each 2D colormap, the
index for the value component is defined by the grey value
obtained from running the LIC computation, and the index for the
saturation component is defined by the magnitude of the value of
the particular scalar distribution being represented at that point.
The result is to preserve the luminance pattern established by the
LIC while defining the colors to be fully saturated at points where
the scalar variables reaches their maxima, fading to the default
LIC value as the magnitudes of the scalar variables decrease.

The streamline based fast-LIC algorithm [Stalling and Hege 1995]
is critical to our implementation as the hue index is only
incremented when a new streamline is calculated.   In our latest
implementation, the output image is created in a single pass.
However special steps have to be taken to prevent color mixing,
while preserving the anti-aliasing effects that are achieved when
multiple streamlines are allowed to pass through each pixel.  We
accomplish this by recording, for each pixel in the output image,
the hue index of the first streamline that was used to determine its
color.  When subsequent streamlines pass through the same pixel,
the original hue index is used in the colortable lookup, so that
only the luminance components from the multiple streamlines are
blended when the results are averaged.

In areas characterized by the presence of prominent values in
multiple distributions, alternate colors are visible along adjacent
streamlines.  We use a sparse and a consistent mapping of
individual colors to individual streamlines in order to maintain
continuity in the representation of each distribution and to ensure
that the apparent concentration of each color remains in consistent
proportion to the magnitude of the corresponding scalar
distribution, regardless of the concentrations of the other scalar
distributions at that point.

The success of our method depends on being able to represent
multiple different streamlines across each ‘point’ in the
multivariate distribution being portrayed.  To achieve best results,
it is generally necessary to up-sample the input data.  For the
images in this paper, a 1071x1071 input texture was used, and the
maximum streamline length was 380.

4. Texture Stitching

Figure 6 illustrates the classical problem with attempting to apply
a color wash to an input texture, before running LIC, to indicate
the distribution of values in a scalar field associated with the
vector data:  the effect of the LIC is to smear out the colors,
distorting the appearance of the scalar distribution in the final
image and impeding efforts to accurately interpret the value of the
distribution from the value of the color at any particular point.
For this reason, color encoding is universally applied post-LIC,
unless it is explicitly desired to use the color to demonstrate the
effects of advection.  Being aware of these issues with respect to
the use of color, and wishing to use spatial frequency to encode
the presence of discrete regions of interest in our data, we sought
to develop ‘texture stitching’ – a post-LIC variant of the pre-LIC
multi-frequency method proposed by Kiu and Banks[1996] in
which it would be possible to preserve the fidelity of region
boundaries implicitly indicated by spatial frequency differences in
the texture pattern in the final image, while avoiding the
introduction of unnecessary discontinuity artifacts.

Figure 6:  An illustration of the problem with trying to use color
to indicate regions of interest pre-LIC.  Left: color wash applied to
the input texture.  Middle: results after running LIC – the region
definition is not well preserved.  Right: results of applying the
color wash post-LIC.  The goal of ‘texture stitching’ is to achieve
the latter effect with multi-frequency texture patterns.

Following Kiu and Banks [1996], the first step in our approach is
to construct a set of correlated noise texture images by low pass
filtering an initial high frequency noise pattern and equalizing the
intensity histograms of the results to the intensity histogram of the
original.  For our application we were primarily interested in
using spatial frequency to indicate the locations of computed
‘regions of interest’ within a larger surrounding flow field.  Thus
we only needed to generate two noise texture patterns (high and
low).  To create the images in this paper, we applied a Gaussian
filter of width 20 and standard deviation 2.0 to the white noise
shown in figure 7(left) to achieve figure 7(right).

Figure 7:  Samples from input textures used in our texture
stitching technique.  Left: the high frequency noise input texture.
Right: the low frequency pattern achieved after Gaussian blurring
and histogram equalization.

There is a direct correlation between the size differences of the
spots in the two input textures and the filter kernel length
differences that are required to achieve output textures that will
appear to differ by only a uniform (isotropic) scaling factor.
Although we did not intend to attempt to use filter kernel length to
encode any information about the flow, we determined that we
would need to use a larger filter kernel length with the low
frequency input texture in order to make the lines in the low
frequency output texture appear to have the same length-to-width
ratio as the lines in the corresponding high frequency pattern.
Since the lower frequency lines are less effective at conveying
details of the flow orientation, we decided to use the low
frequency texture to demarcate the regions of interest, which are
characterized by uniform momentum and low velocity.

We proceeded by using the high and low frequency noise input
textures to create two separate LIC images.  We also created a
binary mask corresponding to the results of our trial region
detection algorithm [Ganapathisubramani et al. 2003] (one of the
goals of the visualization effort was to determine the suitability of
the results produced by our region detection method and possibly
to provide insight into how it might be refined to achieve greater
effectiveness).  We used the binary mask to composite the results



post LIC.  The results of our method are shown in figure 8, top
right.  Results obtained using the original multifrequency LIC
method are shown in figure 8, top left, for comparison.

One issue that arose was the question of whether it might be
desirable, or not, to minimize the incidence of contrast differences
between the low frequency and high frequency texture regions.
Contrast will inevitably be lower for LIC images obtained from
higher frequency input patterns, unless there is a huge reduction in
filter kernel lengths, because more different grey values will be
averaged together, bringing the result closer to the mean than in
the case of the low frequency pattern.  Retaining the ability to
equalize contrast, which can easily be done in the texture stitching
approach, reserves the potential to use contrast differences to
encode a different scalar distribution.  Figure 8, bottom right,
shows the results of performing texture stitching without contrast
equalization.  Here the region differentiation becomes more
prominent.  However, the general continuity of light and dark
patterning remains consistent between the regions, which would
not be the case if unrelated input textures were used (figure 8,
bottom left).

Figure 8:  Top: the region of interest mask.  Bottom: images are
obtained, clockwise from upper left, using: the Kiu/Banks
algorithm; texture stitching with histogram equalization; texture
stitching plus contrast enhancement of low frequency regions;
texture stitching using unrelated input patterns.

The main drawback of texture stitching, compared to the multi-
frequency LIC approach taken by Kiu and Banks, is that it allows
region boundaries to be noticeable in the final image.  Hence the
texture stitching approach will not be suitable for applications in
which one hopes to approximate a continuous series by a finite set
of different spatial frequency patterns, which was the target
application for Kiu and Banks.

5. Combination of Techniques

The color weaving and texture stitching techniques can be used in
combination to visualize multiple scalar distributions across a
flow field and emphasize regions of interest in the data.  The first
step in the process of merging the two techniques is to create high
and low frequency color weave component images using the
different spatial frequency input patterns.

Using a low spatial frequency input texture does not change the
resolution of the streamlines calculated.  If the same technique is
used for hue index selection in the low and high frequency texture
cases, the result will be an appearance of high frequency color
changes within a lower frequency luminance-dominated pattern,
as seen in figure 9.  The low frequency color weave image can
also be combined via texture stitching, as shown in figure 10, with
the high frequency image color weave image computed earlier,
using the region of interest mask partially shown in figure 8.

Figure 9: A close-up view of a portion of a color weave image
created using a uniformly low frequency input pattern.

Figure 10: The same excerpt, created using a combination of color
weaving and texture stitching.  The low spatial frequency pattern
indicates the probable extent of a coherent packet of hairpin
vortices.



6. Summary and Discussion

We have presented two techniques that can facilitate the effective
visualization of multi-valued flow data using color and texture.

‘Color weaving’ provides an alternative to traditional color
compositing by allowing multiple colors to be closely interwoven,
via the assignment of distinct separate hues to individual
streamlines, rather than blended.  In order to allow each color to
encode multiple values in a continuous distribution, we let the
saturation of the color at each point vary according to the value in
the corresponding scalar distribution.  We achieve consistent
combinations of colors by assigning color indices to streamlines
in an alternating manner that depends on the order in which they
are encountered in a deterministic walk through the pixel grid.
The result is a multicolored LIC image that resembles a tapestry
woven with different colored threads.

‘Texture stitching’ allows preservation of faithful region
boundaries in multi-frequency LIC through the use of post-LIC
merging of selected adjacent regions.  We first obtain separate
LIC textures based on correlated high and low frequency noise
input patterns, then combine the results using a binary mask to
force adherence to pre-defined boundary curves.

Both of these methods were developed to facilitate simultaneous
visualization of multiple derived quantities in experimentally
acquired, stereo PIV data of wall-bounded turbulent flow at
moderately high Reynolds numbers.  However, both methods
would also prove useful in visualizing PIV or stereo PIV data in a
variety of turbulent or other three-dimensional flows.  Our
ultimate goal through this work is to enable researchers to obtain a
succinct, meaningful visual summary of the contents of a dataset
through providing techniques that allow the creation of images in
which the important features of multiple scalar distributions can
be understood both independently and in the context of multiple
other distributions.  Color weaving provides a method for accurate
display of derived quantities that may overlap — for example,
wall-normal vorticity and Reynolds shear stress, or wall-normal
vorticity and swirl strength, as shown in Figure 5.  The method
thus allows for accurate interpretation of the flow structure in the
overlapping regions, e.g. correlation of out-of-plane vorticity and
velocity or identification of vortex cores within shearing zones.
Texture stitching is important in accurately displaying the extent
of specific regions identified within a flow field, particularly in
zones where velocity gradients may be strong.  In the current
paper, this effect was employed to delineate the boundaries of a
vortex packet identified with a specific feature extraction
algorithm [see Ganapathisubramani et al. 2003].  In other studies,
it could be employed to accentuate individual vortices, streaming
or straining zones, etc.

In the future, we would like to extend our texture stitching
approach beyond LIC to the case of multiple different texture
types, finessing the problem of maintaining continuity between
adjacent texture patches through the use of novel texture synthesis
methods that operate on the basis of multiple considerations in the
flow.
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