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Abstract

Researchers have long been interested in developing a deeper understanding of the key

physical mechanisms in fluid dynamics. Of particular interest are the complex relationships

between the multiple scalar and vector quantities used to characterize scientific phenomena

within the flow. Efforts to achieve a fundamental understanding of these key physical

mechanisms remain limited mainly because of a lack of understanding of the nonlinear

interactions that occur among the components of the flow.

The goal through this work is to enable researchers to obtaina succinct, meaningful visual

summary of the contents of a dataset that consists of multiple, coincident variables. This is

accomplished through providing techniques that allow the creation of an image in which the

important features of multiple scalar or vector fields can beunderstood both independently

and in the context of the other fields.

This research offers several new techniques for effectively using color and texture

to simultaneously convey information about multiple co-located scalar and vector

distributions. Specifically, we introduce:

• color weaving, an alternative to traditional color compositing for simultaneously

representing multiple distributions by allowing colors tobe closely interwoven via

the assignment of distinct separate hues to individual streamlines

• applying natural textures to streamlines to create a richlydiverse set of possibilities

for the visualization of multiple distributions within a flow

• embossing to encode the out-of-plane component of a 3D vector field defined over a

2D domain

• visualizing multiple 2D vector fields using strategies involving layers of disparate

textures and overlapping streamlines

These methods ultimately enhance the ability to provide insight into the complicated

interactions that occur within multi-field flow data.
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Chapter 1

Introduction

The field of scientific visualization focuses on creating images that convey salient

information about underlying data [22]. The visualizationof data makes it possible for

researchers, analysis, engineers, and the lay audience to obtain insight in these data in an

efficient and effective way, thanks to the unique capabilities of the human visual system,

which enable us to detect interesting features and patternsin a short time [82].

The way information is displayed has a profound impact on howit is interpreted. Like

mathematics, the principles of the design of images is universal, and are independent of

any specific language or culture. For these reasons, it is important to analyze the method

of information visualization, and create images that accurately reflect the data represented

[72, 73, 74].

1.1 Motivation

The goal of scientific visualization is to represent information in a manner that is easy

to interpret, accurate, and lends itself to a fundamental understanding of the underlying

organization of the information being displayed. Whether consciously considered or
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not, the process of evaluating and analyzing scientific visualization images relies upon

human visual perception and aesthetics [57]. To produce an image that successfully

reflects multi-field data it is necessary not only to be accurate in the representation of

individual distributions, but also to portray each specificcomponent in a way that does not

interfere with the accurate perception of the other components. This process of successfully

combining variables has important applications in analyzing the scientific phenomena

represented by multi-field data.

A multi-field dataset is a collection of data in which severalrelated distributions exists at

the same location. A dataset that includes pressure and temperature at each sampling point

is an example of a multi-field data set. Current scientific experiments and computational

models are capable of generating a wealth of information; much of this data includes

multiple coincident variables. What has become apparent through the collection of this

data is the difficulty involved in extracting important information from these datasets, and

the lack of adequate tools that are available to efficiently analyze them. In this dissertation,

we discuss several different visualization techniques forthis purpose. Our ultimate goal

through this work is to enable researchers to obtain a succinct, meaningful visual summary

of the contents of a dataset through providing techniques that allow the creation of

images in which the important features of multiple distributions can be understood both

independently and in the context of multiple other distributions.

1.2 Overview

This dissertation presents a combination of methods that approach the task of multi-field

flow visualization.

Chapter 2 provides three different kinds of background information: visualization (section

2.1), fluid dynamics (section 2.2), and astronomy (2.3). This chapter is important because it
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provides the foundation of work that the contributions presented in the dissertation are built

from. The visualization section reviews the relevant work done in the flow visualization

and multi-field visualization communities. A background inthe application areas of fluid

dynamics and astronomy is included to assist the reader in following the discussion of

the images throughout the dissertation. While the algorithms developed are not limited to

only applications in astronomy or fluid dynamics, we have applied the techniques to very

a very specific set of problems in these fields. We have included these sections to give

a background of the problems challenging scientists, establish a working vocabulary, and

define the terms used throughout this volume.

Chapter 3 addresses several visualization techniques designed to graphically depict

components of flow. We illustrate direct and texture-based flow, explain how the relative

velocity of the observer effects flow visualizations, and describe methods to depict direction

of flow within a static image. We also discuss the difference between streamlines,

streaklines, and pathlines.

Chapter 4 presents different techniques for the visualization of scalar fields within flow

images. Effective color use is motivated by the introduction of a novel technique that

provides an alternative to traditional color compositing.We also discuss the role of 3D

graphics used to depict a scalar value. The perceptual limitations that prevent individual

techniques representing scalar values to be effectively combined is illustrated through the

combination of contrast and luminance. This leads to a technique, based on embossing,

that has been developed to encode the out-of-plane component of a 3D vector field over a

2D domain.

Chapter 5 describes the approach of using textures to provide a consistent and highly-

detailed visualization of multi-field flow data. We discuss how textures can be

geometrically mapped to streamlines and used to represent flow fields. We demonstrate

how texture attributes and multiple textures can be utilized to represent various components

3



of the data.

Chapter 6 presents strategies for the visual representation of multiple vector fields. We

explore the range of effects that can be obtained by combining several existing flow

visualization techniques for the purposes of analyzing multiple vector fields. We apply

the insights gained by the experiments to three different scientific applications.

We conclude in chapter 7 and discuss future work.

1.3 Contributions

The major contributions of the dissertation can be summarized as:

• Colorweaving (section 4.1.3) [76]. This technique provides an alternative to

traditional color compositing in flow visualizations by allowing multiple colors to

be closely interwoven via the assignment of distinct separate hues to individual

streamlines, rather than blended.

• Contrast and mean luminance analysis (section 4.3) [77]. Werigorously examine the

abilities and limitations of using contrast and mean luminance in the representation

of scalar values within a flow field.

• Embossing to represent scalar data (section 4.5) [77]. Thistechnique utilizes an

embossing algorithm to encode the out-of-plane component of a 3D vector field

defined over a 2D domain.

• Flow visualization using natural textures (section 5.1). We present methods that

utilize the qualities and attributes of natural textures tovisualize multiple scalar

distributions and multiple vector fields obtained across a 2D domain in a turbulent

boundary layer flow.

• Strategies for the visualization of multiple 2D vector fields (section 6.1) [78]. We
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discuss strategies for effectively visualizing co-located 2D vector fields, enabling the

key physical structures of one vector field to be clearly understood within the context

of a related vector field.
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Chapter 2

Background

The material in this chapter serves as a background for the research in the remainder of the

dissertation. The primary goal of our research is to produceeffective visualization tools for

multi-field data.

The techniques introduced in this dissertation have been specifically applied to experimental

or computationally-generated data supplied by researchers in the Department of Astronomy

and the Department of Aerospace Engineering and Mechanics at the University of

Minnesota. This interaction between visualization researchers and domain scientists has

proven extremely beneficial to both parties. Through our collaboration we have both

advanced our ability to create effective visualizations and made important discoveries that

further the development of important theories related to the applications. The application

scientists played a critical role in defining the specific needs that the visualization

techniques presented here were developed to address. In addition, they provided an

objective assessment of the functionality of the methods, in terms of how well they meet

their goals of gaining greater insight into their data.

Often times, a challenging component to this research is developing a common vocabulary

with the scientists in order to properly communicatewhat are the key physical structures
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that need to be visualized in addition tohowto go about visualizing the data.

In this chapter, we describe the basic fundamentals of fluid dynamics and astronomy

necessary to understand the problems inherent with the multi-field data in each of these

domains. Furthermore, we examine the background of multi-field visualization and flow

visualization techniques.

Section 2.1 provides a background in techniques developed to visualize flow and multi-

valued data. We focus on texture-based techniques designedto depict a vector field in

addition to other coincident variables. Section 2.2 summarizes the principles of fluid

dynamics that are relevant to the collaboration with our colleagues from the Department

of Aerospace and Mechanics at the University of Minnesota. We explain the properties of

turbulent flow and the mathematically derived fields that areimportant to characterizing

regions of interest within the data. We also describe the experimental setup to collect

data and a numeral simulation of turbulent flow. Section 2.3 briefly explains the

research currently conducted in the field of computational physics – namely in modeling

astrophysical jets. We supply an introduction and explanation of the multi-field data

generated by these simulations.

This dissertation builds upon the vast amount of literaturein scientific visualization –

particularly in the fields of flow visualization and multi-field visualization. In the next

section, we review many of the seminal works in these categories.

2.1 Flow Visualization

Flow Visualization, a classic subfield of scientific visualization, is a richly diverse field that

has applications in a variety of industries including: aerospace, automotive transportation,

chemical processing, weather simulation, climate modeling, and medical visualization.

Thus, the variety of solutions for flow visualization applications demands a diverse range
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of techniques. In the following, many of the existing flow visualization algorithms are

categorized and discussed in general before the literatureis reviewed.

Figure 2.1: Classification of flow visualization techniquesbased on [46] – from left to right:
direct, texture-based, based on geometric objects, and feature-based.

2.1.1 Classification

In a state of the art report on dense and texture-based flow visualization, Laramee et al. [46]

classify flow visualization into several different sub-categories depending on the need of the

user. These categories include direct flow visualization, texture-based flow visualization,

geometric flow visualization, and feature-based flow visualization.

Direct flow visualization

This category uses a technique that directly transfers the data to an image in the simplest

manner possible. These techniques provide an intuitive representation of the data and

allow immediate investigation of the flow field. Color codingan additional scalar attribute,

such as temperature or pressure, would be considered a direct flow visualization technique.

Perhaps the most straightforward approach to presenting a vector field is to use a serious of

glyphs known as vector plots or hedgehogs [42].
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Texture-based flow visualization

This category uses a computed texture to construct a dense representation of the flow. The

use of texture allows for a consistent, highly-detailed, and correlated representation of a

vector field. In most cases, the vector field is used to determine the resulting texture through

the filtering of pixel values.

Geometric flow visualization

This category includes techniques that first identify geometric objects as a basis for the flow.

Examples of these objects include streamlines, streaklines, and pathlines. These objects are

typically computed by using an integration-based approachand are used to depict behavior

induced by the flow dynamics [52].

Feature-based flow visualization

This category utilizes a two-step approach to visualize special or important features of the

data. First, important phenomena or topological information is extracted from the data set.

Then, the visualization is performed on the extracted information – allowing for compact

and time-efficient visualizations of potentially very large data sets [53].

The algorithms that belong to the dense and texture-based flow visualization category

comprise a suitable background for the flow visualization component of the dissertation.

In the next section, we examine the classic texture-based flow visualization techniques.

2.1.2 Texture-Based Flow Visualization

Textures have traditionally been used to visualize vector fields for the purpose of analyzing

the form and behavior of flow consistent with theoretical models and to infer the underlying
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behavior of experimentally-generated flow fields. The use oftexture allows for a consistent

and highly-detailed representation of a vector field allowing an observer to both analyze

and better understand the dynamics of fluid flow.

Spot Noise– Spot Noise, developed by Van Wijk [79], was one of the first texture-based

algorithms used to display a flow field. In this algorithm, a texture is produced from

weighted and randomly positioned spots deformed in accordance with the direction of flow.

A spot noise texture is defined by:

f (~x) = ∑aih(~x−~xi)

whereh(~x) is called the intensity function, ai is a scaling factor, and xi is a random position.

The original contribution of spot noise did not accurately reflect high, local velocity

curvature. Enhanced Spot Noise by De Leeuw and Van Wijk [8] use curved spot primitives

to address this problem.

One advantage of the spot noise algorithm is that it allows for the depiction of velocity

magnitude through the deformation of the spots. A comparison between spot noise and

LIC (the subject of the next review) conducted by de Leeuw andvan Liere [7] states that

the standard LIC algorithm uses normalized vectors and doesnot allow for the perception

of velocity magnitude; however, LIC does provide a better sense of flow direction than spot

noise.

Line Integral Convolution – Line Integral Convolution(LIC) was first introduced by

Cabral and Leedom [4]. A widely-used and versatile algorithm, the original algorithm

takes as inputs a vector field defined on a Cartesian grid and a white noise input texture.

Texels are convolved along calculated streamlines, using afilter kernel, to produce an

output texture that is highly correlated in the flow direction. Specifically, given a streamline

σ , LIC calculates the output texture by calculating the intensity I for a pixel located at

x0 = σ(s0) by
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I(x0) =
∫ s0+L/2

s0−L/2
k(s−s0)T(σ(s))ds

whereT stands for an input noise texture,k denotes the filter kernel,s is an arc length used

to parameterize the streamline curve, andL represents the filter kernel length.

Fast LIC – Stalling and Hege [66] achieved an order of magnitude increase in the efficiency

of the LIC algorithm by taking advantage of coherence along streamlines and increased

the fidelity of the resulting output image by using a fourth-order Runge-Kutta method

for streamline calculations. This results in the computation of the output texture being

streamline oriented, not pixel oriented.

LIC with Normal – Scheuermann et al. [62] combined surface deformation withLIC

to visualize three-dimensional vector fields defined on a two-dimensional manifold. The

normal component is used to deform the manifold and is rendered as a three-dimensional

scene. A similar approach presented by Sanna and Montrucchio [59] uses bump mapping

to encode an arbitrary additional scalar variable over a vector field.

LIC with Flow Direction – One disadvantage of traditional LIC images is that the direction

of movement in a flow is ambiguous. Animation can be used to make that information

explicit [4, 33, 66]. Wegenkittl, Groller, and Purgathofer[87] introduced a technique called

Oriented Line Integral Convolution (OLIC) that addresses this issue in a single static image.

The OLIC algorithm, in essence, uses a sparse texture resembling ink droplets on a page

as input and a ramp-like convolution kernel smears the droplets according to the vector

field, resulting in a collection of streaks in which intensity increases from tail to head.

Computation time for this method was significantly reduced with the introduction of Fast

Oriented Line Integral Convolution (FROLIC) [86]. More recently, in another approach

similar to OLIC, Sanna et al. [60] propose a Thick Oriented Stream Lines (TOSL) method,
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in which the orientation of a flow is depicted by increasing the luminance along calculated

streamlines.

Multi-frequency LIC – Kiu and Banks [41] illustrate how using a multi-frequency noise

texture can be used to demonstrate components of a flow field. Using multi-frequency input

textures along with increased filter kernel lengths allow the resulting image to incorporate

indications of velocity magnitude.

Texture Mapping Flow – Verma, Kao, and Pang presented a method for generating

LIC-like images through texture-mapped streamlines called PLIC (Psuedo-LIC) [83]. By

experimenting with different input textures, both LIC-like images and streamline-like

images can be produced. Taponecco and Alexa [68] introducedan algorithm that used

a Markov model approach to synthesize a texture according toa flow field. This technique

uses a strongly directional texture that is rotated according to the vector field. The

resulting image is created in a pixel-by-pixel manner usingMarkov Random Field texture

synthesis. Shen, Li, and Bordoloi [65] utilize texture mapping in addition to analysis of

three dimensional geometric properties to volume render three-dimensional unsteady flow

fields.

2.1.3 Multi-Field Visualization

Multi-field data andmulti-valueddata both consist of multiple variables that are spatially

coincident over the domain. The termsmulti-field andmulti-valuedare distinguished by

how the multiple variables are derived. Inmulti-valued data, multiple variables are derived

from a single calculated or sampled variable. In the PIV experiments, for example, the

velocity field is experimentally generated and the quantities of vorticity, Reynolds shear

stress, and swirl strength are mathematically derived.Multi-valueddata, however, is a more

general term the describes a dataset of multiple coincidentvariables, including variables

that are derived or obtained in a different manner.
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Multi-field visualization refers to the techniques developed to analyze multiple variables

that exist on the same domain. Classic examples are scalar and vector variables that co-

exist, or tensor data visualization. In the following, manyof the existing techniques that

allow for the visualization of several different co-existing fields are reviewed.

Geometry-based Multi-Field Visualization – As early as 1991, Crawfis and Allison [6]

presented a technique for mapping multiple scalar fields in addition to a vector field on a

non-planar surface using the visual variables of color, texture, and height. An inherent

limitation in visualizing vector data over surfaces in 3D isthat it can be difficult for

observers to disambiguate the effects of projection – possibly causing false interpretation

of the orientation information. Also, the 3D nature of the new surface may occlude other

regions of the domain.

Perceptual Textures– Healey and Enns [23] contributed a method that utilizes texture

elements on an underlying 3D height field to visualize multi-field data. The texture

dimensions of height, density, and regularity can be used toincrease the number of

attributes that can be simultaneously represented. Ware and Knight [85] proposed the use of

Gabor functions to create texture-like images of flow data inwhich information is encoded

along the perceptually significant texture dimensions of scale, orientation and contrast.

Layers of Images– Weigle et al. [89] propose a texture generation technique based on

the layering of patches of oriented slivers. Luminance and orientation are used to encode

information about multiple overlapping scalar fields. Inspired by brush strokes and layering

concepts from painting, Kirby, Marmanis and Laidlaw [40] showed how different sized

icons, color, elongated ellipses, and layering could be used to portray multivariate data

from 2D compressible flows.

Tensor Visualization Using Ellipsoids– Laidlaw et al. [43] demonstrated how shape,

orientation, and color attributes of ellipsoids could be used to represent multivariate

components in diffusion tensor images of the mouse spinal cord. In addition, they
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demonstrated a method for representing multi-valued data inspired by the brushing and

layering techniques used in oil painting. Kindlmann [38] showed that intuitive tensor

glyphs, based on superquadric surfaces, can be effective indemonstrating diffusion tensors

data of the brain.

2.1.4 Texture Synthesis

Textures provide a subtle richness and wide spectrum of possibilities for visual appearances.

The use of different, related textures applied in such a way as to demonstrate the underlying

data would produce the ability to represent multiple variables in an intuitive and unique

fashion. Several of the seminal algorithms and techniques related to the use of texture in

visualization are reviewed below.

Texture synthesis methods [14, 88] allow for an unlimited quantity of texture patterns to

be generated that are perceptually equivalent to a sample input texture. These algorithms

work by constructing the output image in a pixel-by-pixel scan line order in which a pixel

is synthesized by comparing a similarly shaped neighborhood around it with the original

sample.

Along these lines, Efros and Freeman [13] introduced a “image quilting” algorithm that

produces an effective texture synthesis pattern for a wide variety of input textures. The

algorithm works by essentially piecing together small patches of the input texture which

allows the output to maintain both continuity and coherenceacross the entire pattern.

Similarly, Ashikhmin [1] presents a technique for synthesizing natural textures based on

repeating patterns consisting of small objects of familiarbut irregular sizes such as flowers

and pebbles.

Khouas, Odet and Friboulet [36] use a 2D autoregressive synthesis method to simulate

a 3D fur-like texture in order to represent two dimensional flow fields. This technique
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allows control over streamlet orientation, length, and density, and has been used to produce

striking visualizations of vector orientation and magnitude.

2.2 Fluid Dynamics

This section serves as a background to the research in fluid dynamics for which we

developed the visualization techniques presented in this dissertation. It is designed to

supply the reader with a sufficient background and terminology in order to understand

the motivating factors which drive the need for multi-field visualization.

The understanding of the properties of fluid dynamics are essential in a range of scientific

applications such as engineering, aerodynamics, and weather prediction. Turbulent flow is

an active area of research in the field of fluid dynamics. Nobel-prize winning physicist

Richard Feynman describes turbulence as “the most important unsolved problem of

classical physics.”

2.2.1 Turbulent Flow

Turbulent flow is chaotic in nature and characterized by swirling vortex structures, or

eddies, of various sizes, strength, and orientations. One of the most basic types of turbulent

flows is that which occurs when a fluid passes a boundary, such as air over an airplane wing

or the flow of oil within a pipeline. The velocity of the flow must match the velocity of the

wall at the surface of the boundary. Aboundary layeror a turbulent boundary layeris the

zone over which the average fluid velocity decreases from freestream value to zero. A flow

is characterized by the ratio of inertial forces to viscous forces. This quantity is referred to

as theReynolds number. The Reynolds number of a flow, denotedRe, is mathematically

defined as
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Re=
UL
v

WhereU is the characteristic velocity,L is the characteristic length, andv is the kinematic

viscosity of the fluid [54]. Turbulence occurs when the inertia term dominates the viscous

term. A flow that is not turbulent is called alaminar flow.

We next introduce several derived quantities that are derived from the velocity vector field.

These variables are extremely useful for the analysis of turbulent flow within a boundary

layer.

Vorticity

In addition to the velocity vector field of the flow(−→v ), several other variables can

be numerically calculated and are significant to theories related to turbulent flow. For

example, thevorticity vector field (−→w = ∇ ×−→v ) can be numerically calculated and

analyzed with the velocity vector field. The vorticity vector field is a measure of the

rotation of fluid flow. Analysis of the vorticity vector field is useful as it can provide

an indication as to the strength and orientation of the swirling eddies within the flow.

Understanding the coincidence of the velocity and vorticity fields is of interest to a number

of investigators, particularly in conjunction with the visualization of vortex core locations.

These visualizations allow for the analysis of several terms such as(−→v ×−→w), called the

Lamb vector, and(−→v · −→w) which is proportional tohelicity, both of which have been

suggested as possible descriptors of vortex tubes [50].
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Reynolds Shear Stress

Given the components of the velocity vector field, the streamwise componentu, the

spanwise componentv and the wall-normal componentw, the scalar fieldReynolds Shear

Stresscan be calculated as−uw. Areas in where there exists significant values of Reynolds

Shear Stress are interesting to researchers in fluid dynamics as the generation of Reynolds

shear stress is believed to be correlated with increased surface drag and the sustenance of

turbulence [16]. In turbulent boundary layers, various theories have indicated that hairpin

shaped vortices cause drag by producing Reynolds shear stress, and that this process may

be enhanced when multiple hairpins travel together with similar speeds as a packet.

Swirl Strength

Once the velocity vector field has been numerical simulated or experimentally-generated,

velocity gradients can be calculated and are typically usedto understand and identify the

subtle components of fluid dynamics. Jeong and Hussain [30] indicated that the second

invariant of the velocity gradient tensor,λ2, is a quantity that measures the dominance of

vorticity over strain and proposed that it could be used as a criterion to identify vortices.

Zhou et al. [93] suggested the use of the imaginary part of thecomplex eigenvalue (λci) of

the velocity gradient tensor to visualize vortices. This value is referred as the localswirl

strengthof the vortex. For the calculations presented in this dissertation, the Zhou et al.

definition is used.

A simplified version of swirl strength using a 2D velocity gradient can be computed to

identify vortex cores. This quantity is referred to as the 2Dswirl scalar field and is limited

to identifying vortex cores that are oriented in a position normal to the sampling plane. Dual

plane PIV is an extension of single plane PIV in which velocity components are measured

in two planes simultaneously. This allows for all 3D velocity gradient measurements to

be calculated. The corresponding 3D swirl scalar field is a measure of the existence of a
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vortex core in any orientation.

The characteristics of vortex cores, including their orientation given by 2D and 3D swirl,

are useful in theories designed to reduce skin-friction drag in turbulent flow.

2.2.2 Particle Image Velocimetry

Particle image velocimetry(PIV) is a technique that can be used to experimentally measure

instantaneous components of a velocity field in a plane of a turbulent boundary layer in a

moderate to high Reynolds number flow. PIV uses optical recording to measure a full field

flow in a manner that is instantaneous and non-intrusive. Theexperimental set-up of a PIV

system includes tracer particles that are added to the flow. Alaser illuminates these particles

in a plane of the flow at least twice within a short time interval. The light scattered by the

particles is recorded and the displacement of the particle images is determined through

evaluation of the PIV recordings.

Standard PIV is capable of recording the projection of the velocity vector within the

plane. The out-of-plane velocity component can be calculated by making an additional

PIV recording from a different viewing axis and reconstructing the 3D geometry using

both camera angles. This technique is referred to asstereoscopicPIV. The experimental

facility for the PIV experiment is shown in figure 2.2.

The particles used in PIV experiments must be small as to non-intrusively follow the flow,

scatter the laser light, and illuminate the cameras positioned to capture images. Tiny

particles of olive oil (mean diameter of 1µm) are the most commonly used for the tracer

particles as they can be atomized, used in air flows, and are non-toxic.

While the PIV data is sampled on a 2D plane, the resulting footprint of the multi-variate

data gives insight into the structure and behavior of the 3D flow. The advantage of

examining the PIV experimental data, compared to computationally-generated data, is the
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Figure 2.2: Experimental facility for a PIV experiment.

ability to analyze the behavior from experimental results of moderate to high Reynolds

number flows.

2.2.3 Numerical Simulation

Apart from experimentally-generated data, we consider wall-bounded turbulent flow

data from a direct numerical simulation (DNS) of the full Navier-Stokes and continuity

equations [11]. The great value of DNS data is that it is fullyresolved and provides full

four-dimensional (space and time) data. However, the difficulties with DNS is that it is

very expensive and limited in Reynolds number. This is because cost of simulating wall-

bounded turbulent flows scales nominally with the Reynolds numberRe3
τ . A simulation

involving 2.7 billion grid points (3072×2304×385), results in a time-step yielding a raw

(unprocessed) field of nominally 9 GB in size. Recently, Hoyas and J. Jiménez [26] have

reported a new simulation for nominally twice the present Reynolds number (Reτ = 2003).

In this case, the simulation was reported to run 6 million processor-hours on a 2048

processor supercomputer, generating approximately 25 TB of raw data.

The modeling of a turbulent channel flow is of interest to researchers in fluid dynamics

because the simulation allows for the analysis of large, energetic features in the flow and the
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ability to correlate the flow structures in different layerswithin the 3D model. Developing

a deeper understanding between the different regions within a channel flow results in a

better understanding of the formation of vortical structures and the key-physical features

that cause skin-friction drag.

The numerical technique requires the integration of the Navier-Stokes equations in the form

of evolution problems for the wall normal vorticity and the Laplacian of the wall-normal

velocity [11]. For spatial discretization, Chebychev polynomials were used in the wall

normal direction, while de-aliased Fourier expansions were utilized in wall-parallel planes.

The temporal discretization used was a third-order semi-implicit Runge-Kutta scheme. As

a large streamwise extent is needed to capture the largest energy-containing motions of

the flow, the simulation employed a computational domain of 8πδ units in the streamwise

direction and 3πδ units in the spanwise direction, whereδ is the channel half width. The

large streamwise extent is needed to capture the largest energy-containing motions in the

flow. The Reynolds number for the simulation wasReτ = 934.

One aspect of the DNS data is that it allows for the investigation of very large scale

energetic features and how these may interact between different regions in the flow.

2.2.4 Regions of Interest within Flow Data

Conventionally, wall turbulence is described in terms of three predominant regions: an

inner region, immediately next to the wall, that is dominated by viscous processes; an outer

region, far from the wall, where viscous effects are negligible; and an intermediate region,

which often is referred to as the overlap of the inner and outer regions. This middle region

is also referred to as the log region or the inertial wall region. Most existing theoretical

approaches regard the inner region to universally scale with inner-wall viscous variables

and to be independent of the log region and beyond. Recent studies have shown evidence

that the inner region is influenced by outer region parameters (δ the channel half-width,
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andU1 the channel center-line velocity) [10, 17].

In streamwise-spanwise planes parallel to the boundary layer surface, the packets can be

characterized by zones of uniform but low streamwise velocity containing areas of high

negative Reynolds shear stress and falling between cores ofstrong positive and negative

vorticity [18].

PIV experimental studies have consistently shown the log region to consist of packets of

hairpin vortices, with long streamwise regions of momentumdeficit and with high-speed

fluid seeming to fill the separation between neighboring motions. However, the PIV fields

are somewhat limited in length (approximately 2δ ). It has recently been discovered that

the structures can exist up to 20δ in length and may have a tendency to meander in the

spanwise direction [27]. The tendency of the low-speed region to meander across the

flow explains why such long length scales have not been observed previously from single-

point measurements in boundary layer flows. Kim and Adrian [37] have noted such long

structures for turbulent pipe flows from single-point hot-film measurements, and referred

to them as “very large-scale motions” (VLSM).

The discovery of the very long “superstructures” is particularly significant as it indicates

an outer-layer scaled phenomena that may have influence all the way down to wall in the

inner layer. The DNS data is very useful for investigating this conjecture and some results

are shown in section 6.4.3 in which two planes are shown simultaneously from the DNS

dataset. The results indicate that near-wall regenerationmechanisms arenot independent

of the slow dynamics associated with structures on the orderof the external dimension of

the flow, as has always been previously believed.
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2.3 Astronomy

An active area of research in the field of computational physics is the modeling of

magnetohydrodynamic light supersonic jets in the context of astrophysical galaxy clusters

[51]. These high-speed jets propagate distances of over 650,000 light years from their

sources, transporting energy and magnetic fields to their surrounding environments. The

jet magnetic field is advected along with the flow and is expected to reflect properties of

the evolving velocity field. Of particular interest is the extent to which the magnetic field

and velocity vector fields are spatially aligned and/or orthogonal to one another and the

interplay between magnetic field strength and the corresponding velocity structures. The

primary goal of this research is to explore the connection between the large-scale flow

dynamics and the small-scale physics underlying the observed emissions from real radio

galaxies [70].

2.3.1 Astrophysical Jets

Several observable properties result from the interactionbetween a high-velocity plasma

jet launched within an active galactic nucleus and an ambient environment. In addition to

observable lobes of luminous material, characteristic radio emission signals the presence of

magnetic fields and relativistic electrons. It is not well understood whether these materials

are transported along the jet, introduced in the jet-intergalactic medium encounter, or both

[71]. In addition to the velocity field, physicists are concerned with the magnetic vector

field advected by these supersonic jets and are interested inanalyzing the relationship

between both vector fields. Developing a deeper understanding of the relationship between

the vector fields’ topology, magnetic field strength, and corresponding velocity structures

results in a greater understanding about how kinetic and magnetic energy distributions

evolve in these systems and contributes to the explanation of radio emissions that can be
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physically observed.

2.3.2 Magnetohydrodynamics

Turbulence within electrically conducting fluids is necessarily accompanied by magnetic-

field fluctuations [3]. Magnetohydrodynamics is the branch of science dealing with the

dynamics of matter moving in an electromagnetic field. Givena magnetic field
−→
B , and

a vector field−→v , changes in magnetic field can be calculated from the ideal magnetic

induction equation:

∂−→B
∂ t

= ∇× (−→v ×
−→
B )

This equation describes how motions of a perfectly conducting fluid change the magnetic

fields contained therein. By examining the magnitude of thisvector, we examine

correlations between increases in magnetic field strength and anticipated shear or

compression regions in the velocity field. Simultaneous visualization of all components

of the velocity field and the rate of change of the magnetic field strength enables us to

locate regions of active field enhancement, distinguish newly-magnified fields from those

advected along with the plasma, and identify velocity structures that generate enhanced

fields.

2.4 Discussion

Because the process of knowledge discovery related to theseapplications is predicated on

the ability to achieve an integrated understanding of the individual contribution of each

variable and of how the variables interrelate with each other, developing effective multi-
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variate visualization methods is of critical importance tofacilitating the understanding and

analysis of results from the turbulent flow (PIV) experiments and magnetohydrodynamic

jet simulations.
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Chapter 3

Illustrating Components of Flow

In this chapter we address several visualization techniques designed to graphically depict

components of flow. The techniques highlighted here are mainly the result of an ongoing

effort to construct tools to develop a better understandingof the complicated interactions

of fluid dynamics.

We begin by discussing the classification of existing flow visualization techniques including

the differentiation between texture and direct flow visualization. We continue with an

illustration of visualizing different convection velocities. We expand upon a current

technique designed to effectively use luminance ramps overdense streamlines to represent

the direction of flow. Finally, we define the subtle differences between streamlines,

streaklines, and pathlines.

3.1 Direct and Texture-based Flow Visualization

Images similar to figure 3.1 (left) are often used to display flow information through the

use of glyphs, such as arrows, to indicate the direction of flow at a discrete set of points.

The length of the arrow may be used to represent the velocity magnitude. While effective
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Figure 3.1: Examples of glyph-based visualization (left) and texture-based visualization
(right).

and efficient, one limitation is that such simplistic plots can only provide information at

relatively sparsely sampled points over a domain, as each glyph will require several pixels

to be drawn. Even when the vector field is not down-sampled, the collection of glyphs

may not easily lend itself to the perception of global fluid flow as the segments must

be perceptually interpolated and connected in order to understand the path of a particle.

Selecting samples along a uniform grid may lead to artifactsin which the structure of the

grid interferes with correct perception of the direction indicated by the vectors [44].

Texture-based visualization methods produce high-resolution output images that allow

structures of the flow to be perceived more easily than with the field-of-arrows technique

(figure 3.1 right). Dense textures allow for the direction offlow at all locations in

the domain to be salient, whereas the field of arrows only givediscrete samples that

can be difficult to interpret. Advantages of texture-based visualizations over field-of-

arrow techniques include higher resolution and a continuous representation of flow when

compared to a field of arrows.

An additional scalar variable may be represented through the use of a color encoded
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background underlying the array of vector glyphs or as a color overlay in the texture-based

approach. Both images in figure 3.1 use a color overlay to represent vorticity magnitude

in an experimentally acquired PIV dataset. Techniques designed to visualize scalar values

will be covered in detail in chapter 4.

3.2 Illustrating Different Convection Velocities

Figure 3.2: In-plane velocity field with swirl strength superimposed in color. The left image
is the raw flow data in which the visualization is dominated bythe magnitude of the vectors
in the streamwise direction. The right image depicts the vector field that results when the
average streamwise component is subtracted from each vector.

The visualization of any vector field is dependent on the relative velocity of the observer.

For a stationary observer (figure 3.2 left), the streamwise component of the vector field (U )

greatly dominates the visualization creating an image thatdoes not lend itself for a further

understanding of the dynamics of the flow. Typically, the average value of the streamwise

component (U) is calculated and subtracted from each vector prior to visualization (figure

3.2 right). Subtracting a value of the streamwise componentfrom each vector changes

the relative velocity of the observer. The resulting image,critical points, and vector field
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features are greatly influenced by the magnitude of the valuesubtracted.

While subtracting a value of the streamwise component from each vector allows for the

visualization to be effective, the resulting flow is specificonly to that relative velocity.

Different characteristics of the flow may be evident by subtracting a value other than

the average streamwise velocity. To illustrate this phenomenon, the scalar quantity swirl

strength (λci) is superimposed in blue over the images in figures 3.2 and 3.3. Swirl

strengthλci is Galilean invariantand does not vary with the magnitude subtracted from

the streamwise velocity. Swirling eddies become apparent at regions of high swirl strength

only when the velocity of the eddies matches the convection velocity subtracted from each

vector.

LIC animations can be used in combination with the swirl strength to determine the

convection velocities of various eddies in the flow. Specifically, the swirl strength can be

overlaid on LIC animations computed using a range of valuesU −Uc to determine under

what conditions locations with largeλci coincide with swirling streamlines. The animation

contains a series LIC images in whichUc is varied from 0.5U to 1.5U. Figure 3.3 shows

several frames from an animation where the number in the bottom left hand corner denotes

the percentage of the average streamwise vector component that was subtracted from each

vector. By stepping through the various images in the animation, it becomes apparent that

swirling streamlines appear and disappear at different values of the convection velocity.

In addition, many other specific features are emphasized at distinct convection velocities.

Figure 3.3: In the progression of the images below, the swirling eddies, highlighted by swirl
strength, are evident in some frames and not in others only because the frame is convecting
at a speed that matches the convection velocity of those eddies.
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For example, many of the swirling zones appear to convect at the streamwise local mean

velocity (U ).

This process of visualizing different convection velocities can aid scientists in determining

under what conditions locations with large swirl strength coincide with different flow

dynamics.

3.3 Depicting Flow Direction

Several techniques have been proposed to overcome the problem of ambiguous flow

direction that occurs in static LIC images [86, 87]. These techniques typically involve

either animation or the use of a monotonically increasing luminance ramp to disambiguate

the direction of the flow. Sanna et al. [60] developed a space-filling method called Thick

Oriented Stream Lines (TOSL), in which the orientation of a flow is depicted by increasing

luminance values along calculated streamlines. An advantage of this technique is that it

provides a dense representation of the vector field.

The TOSL technique is particularly advantageous because ofits high density output,

ability to accurately depict flow direction, relative simplicity, and potential for efficient

implementation. Using the original TOSL algorithm as inspiration, we extend the technique

to enhance the visual effect and improve perception of the flow field.

The first step in the TOSL method, as in the LIC method, is to numerically calculate

streamlines according to the given flow field. The two approaches differ, however, in

that the TOSL method does not use an input texture and does notinitiate a convolution

process. Instead, intensities for pixels along streamlines are incremented according to the

local vector magnitude. The initial 8-bit pixel value is randomly set within a range of 30 and

120 and the algorithm continues by stepping along each pixelcalculated in the streamline

and assigning an increasing intensity value. Local vector magnitude is taken into account,
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as the value of each pixel is incremented by an amount that reflects the velocity magnitude

at that point. Each vector magnitude is normalized with respect to the maximum velocity

on the local streamline. If the vector has a high relative velocity along the streamline, the

increment in grey tone is proportionally high at that point in the image. A high density

output texture is obtained by creating the image in two passes. The first pass creates a

sparse texture by coloring only a percentage of the pixels, using a specific procedure to

select randomly spaced seed points. After a user-defined percentage of the image has been

filled, the remaining pixels are considered in scan-line order to ensure that the entire image

is completed.

Next we describe how we have expanded this technique to more effectively use luminance

ramps over dense streamlines to represent direction of flow.

Modifications of the TOSL Algorithm

We have found that starting with an initial intensity value between 30 and 120 can lead to

artifacts due to streamlines that have a similar range and start from a similar point (such as

the edge of the domain or a singularity). Figure 3.4 shows that this can result as a darkened

Figure 3.4: Restricting the initial value of the streamlinecan lead to artifacts at boundary of
the image domain, as seen in the lower left and bottom of the leftmost image. This problem
can be alleviated by allowing the initial pixel values to span the entire range from 0 to 255.
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and uniform artifact along the edge of the domain where the streamlines are introduced.

The authors of TOSL suggest this starting range in order to avoid initial dark grey and

also to avoidjumps in which the values of neighboring pixels would be 255 and 0. It

has been our experience that computing long streamlines in which several cycles of pixel

values ranging from 0 to 255 occur, includingjumps, can be advantageous. This allows one

streamline to carry several repeated luminance ramps indicating the direction of flow and

results in a fluid final image. The problem of edge artifacts can be alleviated by allowing

the starting value to be randomly assigned to any value between 0 and 255.

Secondly, we feel that a more accurate representation of theentire vector field could

be obtained by using the maximum global vector magnitude to normalize the step size.

Incrementing the intensity of pixels with a step size that isdirectly proportional to

the local vector velocity magnitude produces appealing results at the expense of global

inconsistencies. With this approach, one cannot compare line lengths in different areas of

the image to determine if the velocity magnitude is at a global maximum or simply a local

maximum. By adjusting the factor in which the vector magnitudes are normalized, it is

possible to provide a more globally consistent portrayal ofthe scientific phenomenon.

Finally, we find it appropriate to make the step size inversely proportional to the vector

velocity magnitude instead of directly related to the velocity magnitude. While an observer

of an image may learn to read short lines as representing highspeed areas, and long lines

as representing slow moving flow, we find this approach counterintuitive. Reversing the

mapping results in creating long smooth lines where the flow velocity is at the global

maximum. This is evocative of the result that a spot smeared out over a period of time will

produce a long streak where the flow is faster. Figure 3.5 illustrates the effects of making

these changes. In the topmost image, velocity magnitude is normalized with respect to the

values along the local streamline only. This results in short streamlines at places where

the velocity is greatest along each individual streamline.In the lower image, velocity
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Figure 3.5: Velocity magnitude is normalized with respect to the values along the local
streamline only (top). Velocity magnitude is normalized with respect to the global velocity
magnitude (bottom).

magnitude is normalized with respect to the global velocitymagnitude. The luminance

ramp along streamlines is also defined using an inverse relationship between the step size

and the vector magnitude, resulting in long streamlines where the velocity is at the largest

magnitude globally over the domain

3.4 Streamlines, Streaklines, and Pathlines

Streamlines, streaklines, and pathlines are tools commonly used in the analysis of flows

in order to obtain a fundamental understanding of a vector field. They are often confused

as the differences between them are subtle. The purpose of this section is to define and

differentiate streamlines, streaklines, and pathlines asthey are used in the fields of flow

visualization and fluid dynamics [5].

A streamlineis a line that is tangent to the velocity vector at every point[66]. This line

32



gives the direction and orientation of the flow at each point along the line. In the simplest

case, we define a stationary 2D vector field as mapv : R
2 → R

2,x 7→ v(x). A streamline is

defined by itsintegral curveor path,σ(u), whose tangent vectors coincide with the vector

field:

d
du

σ(u) = v(σ(u))

Notice that time is not included in the above formula. Streamlines are drawn for a specific,

static time in the history of the flow. In general, streamlines constitute the outline of the

fluid layers of the vector field at a particular instant in time[15].

If we wish to consider how a flow field changes, we need to modifythe model to include

the dimension of time. Apathlineis the trajectory of a single fluid particle takes over time.

In this system, the vector field must be defined with respect toa given locationx and the

time t. Correspondingly, the equation that defines pathlines is:

dx
dt

= V(x, t)

A streaklineis the collection of points that have previously passed through the same point

in the flow field. In other words, a streakline is the current location of all fluid particles that

have passed through a particular spatial point in the past.

To mathematically define a streakline [5], we consider a function that supplies a location

within the domain if it has previously passed through a point, sayy. Define a pointa that

has pass through pointy at timeτ by statinga= a(y,τ). At time t, the particle has advanced

to x given byx = x(a, t).

Therefore, the streaklinezat timet for all points that have passed through pointy would be

defined as:
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z= x[a(y,τ), t] 0≤ τ ≤ t

In static flow, where the vector field does not change with respect to time, streamlines,

pathlines, and streaklines reform to the same collection ofpoints. However, in unsteady

motion, the vector field is defined with respect to time and streamlines, pathlines, and

streaklines trace out distinctly different paths. A streamline is line that follows the flow

given a static snapshot of the vector field. A pathline tracesout the motion of a particle

released in the flow. A streakline is the collection of pointsthat have all passed through the

same point.

3.5 Discussion

One of the challenging aspects of research in the field of visualization is understanding

the principles of the scientific phenomenon that are under investigation. This section

introduced several important components of fluid dynamics and flow visualization that

were uncovered during our research into developing images that accurately represent vector

field data. We discussed texture-based visualization versus direct visualization, depicting

flow direction with luminance ramps, illustrating convection velocities, and defined the

difference between streamlines, streaklines, and pathlines. While this chapter does not

provide a comprehensive list of underlying components associated with flow visualization

and fluid dynamics, we feel it does provide a informative introduction to the novel

contributions presented in the rest of this dissertation.
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Chapter 4

Techniques for Visualizing Scalar Values

A scalar is defined to be a single data value associated with each point of a dataset,

quantified with a numerical value [63]. The collection of values representing the same

quantity over the entire domain is referred to as a scalarfield. Visualizing scalar fields

is often useful in obtaining an understanding a particular behavior of an attribute over a

domain. For example, a scalar field such as temperature can quickly indicate which regions

are warmer or cooler than others, and at which point the most extreme values exists. While

scalar field visualization is relatively straight-forward, the visualization of scalar fields can

become complicated when there exists multiple coincident fields.

The images produced in this chapter are an effort to represent multiple scalar fields obtained

from stereoscopicparticle image velocimetry(PIV). As introduced in section 2.2.2, PIV

is a technique that can be used to experimentally measure instantaneous component of

a velocity field in a plane of turbulent boundary layer. Alongwith the vector field,

scalar fields of vorticity, Reynolds shear stress, and swirlstrength can be mathematically

derived and are important in characterizing potential “regions of interest.” The process of

knowledge discovery related to dual-plane PIV experimentsis predicated on the ability to

achieve an integrated understanding of the individual contributions of each scalar variable
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and how the variables inter-relate with each other. Developing effective multi-variate

visualization methods is of critical importance to facilitating the understanding and analysis

of results from these experiments.

In an effort to better understand how multiple variables interact, we have developed several

techniques to assist in the visualization of single and multiple scalar fields.

We begin by discussing the use of color to represent scalar fields. We illustrate how color

has traditionally been used for scalar representation and motivate a new technique designed

to effectively represent multiple scalar fields within an image depicting turbulent flow. We

then discuss how 3D graphics can be used to represent a scalarfield by incorporating height

in addition to a standard texture map. We continue by discussing the role of luminance

and contrast in grayscale images, and the perceptual limitations that prevent individual

techniques to be effectively combined to represent multiple scalar fields simultaneously.

Additionally, we describe how streamline density can be effectively used for representing

a scalar variable. Finally, we present a technique, based onembossing, to encode the out-

of-plane component of a 3D vector field over a 2D domain.

4.1 Color

Past and present research in the fields of color theory and information visualization address

the issue of effectively choosing colors to represent data [2, 24, 55, 56]. Defining an

appropriate mapping that accurately correlates the quantifiable aspects of data into the

human perceptual system can be a challenging problem. We discuss the challenges and

techniques related to using color to represent scalar fieldswithin flow data.
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4.1.1 2D Color Plots

One of the most straight-forward approaches to representing scalar fields is to use a

colormap to represent the data. Once a sequence of colors andcorresponding scalar values

for each color have been defined, pixel values for the image are colored according to the

value of the scalar at each point on the domain. Figure 4.1 illustrates this method on

three images that depict different variables obtained froma PIV dataset. While effective in

representing each component separately, it is difficult to obtain anintegratedunderstanding

of the coincident scalar fields from the separate images.

Figure 4.1: 2D color plot images depicting a single scalar value of a PIV dataset: (from left
to right) streamwise velocity, vorticity, and Reynolds shear stress.

Figure 4.2 shows an attempt at using multiple colors to represent several variables within a

single image designed to visually highlight hairpin vortexpackets from an experimentally

acquired PIV dataset. In this image, red and blue show regions of positive and negative

vorticity, yellow depicts zones of strong Reynolds stress,green shows regions of relatively

uniform streamwise velocity. In general, saturated hues indicate larger magnitudes. Two

other features are depicted in figure 4.2: black curves mark the spanwise center of each

hairpin packet identified and pink regions mark search zonesupstream and downstream of

each packet. The composite plot is fairly effective at highlighting the regions of interest as

defined by the combination of the variables. The type of analysis that this image allows

would be nearly impossible from separate color plots as in figure 4.1. However, the

composite plot does have shortcomings. It is difficult to view the extent of overlap of
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Figure 4.2: Using overlaying colors to represent four different scalar fields in a single
image.

the different variables as the mixture of the colors can result in an ambiguous color. This

makes it difficult to interpret finer points of the multi-valued data.

Next we present how color can be used, in conjunction with LICimages, to effectively

represent multi-valued flow data.

4.1.2 Motivation for Effective Color Use

With few exceptions, the use of color with LIC has traditionally been limited to the

simplest of color compositing operations in which a LIC texture image is in effect overlaid

with a single continuous semitransparent color wash image,with the resulting effect that

blacks are left black and the whites are shifted toward the specified hue at each point.

While effective for conveying a single scalar distributionin the context of the flow,

this post-process method does not allow for the effective simultaneous representation of

multiple scalar fields, due to the perceptual difficulty of and inherent ambiguity in color

decomposition.
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Figure 4.3: Four artificially defined, mutually overlappingregions, overlaid on a LIC image
(left). The same four regions, represented across the same LIC image via color weaving
(right).

Figure 4.3 (left) displays the inherent problem with overlaying colors to represent multiple

fields. The color combinations in the overlap regions are obtained by averaging in RGB

colorspace. Averaging multiple colors in this manner results in an ambiguous grey color

that is not representative of an area in which multiple colors or significant scalar values are

present.

As an alternative, we propose a technique in which multiple colors are allowed to coexist on

neighboring streamlines, resulting in multicolored images that resemble a tapestry woven

with different colored threads. Figure 4.3 (right) displays four regions, represented across

a LIC image viacolor weaving. Note the continuity of color along individual streamlines

within each region, and the ability to accurately perceive combinations of component colors

Figure 4.4: Three close-up excerpts from the overlap image shown in figure 4.3 (right).
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in the areas of high overlap (characterized by the presence of three or more layers).

We describe the details of the algorithm in the next section.

4.1.3 Color Weaving Algorithm

We begin by selecting several highly saturated and perceptually iso-luminant colors using

the technique suggested by Kindlmann [39]. As luminance plays a primary role in how

features are perceived [84], selecting base colors that areas perceptually uniform as

possible helps to achieve a final image in which similar concentrations are represented with

reasonably equivalent prominence across the multiple distributions. Additionally, selecting

colors that are relatively equivalently discriminable reduces the potential for ambiguous or

misleading representations [24]. We then use each base color to define a corresponding

two-dimensional colormap, in which saturation increases along the horizontal axis and

value increases in the vertical direction (figure 4.5).

The colormaps are constructed by determining the extreme values for each of the four

corners of the colormap. First, a default LIC algorithm is run on a white noise image to

produce a grey-scale texture that represents a vector field.This pre-process step is initially

required in order to determine typical values for the darkest and lightest shades of grey, and

is not necessary to repeat once the colormaps have been determined. The value of the upper

left corner of the 2D color map is the darkest grey color obtained by the LIC algorithm; the

value of the lower left corner of the color map is the lightestshade of grey in the default

grey-scale LIC image. We match the luminance values of highly saturated and moderately

saturated values for several distinct hues using the technique introduced in [39]. The value

in the upper right corner of the 2D color map is the darker, subtle color of the hue; the value

in the lower right corner of the colormap is the highly saturated color. The values for the

interior of the 2D colormap are calculated by interpolatingthe saturation of the colors in

the horizontal direction and interpolating the value of thecolors in the vertical direction.
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Figure 4.5: A suite of two-dimensional colormaps; the results of using each colormap to
represent, over the same LIC texture, a simple scalar distribution that is increasing in value
from left to right.

Each scalar distribution is associated with a unique hue andcolormap.

We introduce color on a streamline-by-streamline basis during the computation of the LIC

image. At each pixel along a streamline we define the final image color using a 3D color

table lookup. The first index defines the hue, or the choice of which 2D colormap to be used.

Within each 2D colormap, the index for the value component isdefined by the grey value

obtained from running the LIC computation, and the index forthe saturation component is

defined by the magnitude of the value of the particular scalardistribution being represented

at that point. The desired result is to preserve the luminance pattern established by the LIC

while defining the colors to be fully saturated at points where the scalar variables reaches

their maxima, fading to the default LIC value as the magnitudes of the scalar variables
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decrease.

The streamline-based fast-LIC [66] algorithm is critical to our implementation as the

hue index is only incremented when a new streamline is calculated. In our latest

implementation, the output image is created in a single pass. Special steps have to be

taken to prevent color mixing, while preserving the anti-aliasing effects that are achieved

when multiple streamlines are allowed to pass through each pixel. We accomplish this by

recording, for each pixel in the output image, the hue index of the first streamline that was

used to determine its color. When subsequent streamlines pass through the same pixel, the

original hue index is used in the color table lookup, so that only the luminance components

from the multiple streamlines are blended when the results are averaged.

In areas characterized by the presence of prominent values in multiple distributions,

alternate colors are visible along adjacent streamlines. We use a sparse and a consistent

mapping of individual colors to individual streamlines in order to maintain continuity in

the representation of each distribution and to ensure that the apparent concentration of

each color remains in consistent proportion to the magnitude of the corresponding scalar

distribution, regardless of the concentrations of the other scalar distributions at that point.

The success of our method depends on being able to represent multiple different streamlines

across each point in the multi-variate distribution being portrayed. To achieve best results,

it is generally necessary to up-sample the input data. For the images presented in this

chapter, a 1071x1071 input texture was used, and the maximumstreamline length was 380.

Figure 4.6 shows the color weaving algorithm applied to an experimentally acquired PIV

dataset in which we simultaneously highlight areas of significant positive vorticity (red),

negative vorticity (blue), strongly negative Reynolds shear stress (green), and high swirl

strength (orange or magenta, depending on the direction of the swirl). Careful analysis

of this image allows for an accurate interpretation of the flow structure in the overlapping

regions, e.g. correlation of out-of-plane vorticity and velocity or identification of vortex
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Figure 4.6: A compositecolor wovenimage of an experimentally acquired PIV dataset.
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cores within shearing zones. Figure 4.6 specifically demonstrates evidence of spatially

organized packets of hairpin structures in the streamwise-spanwise planes of the PIV

dataset.

4.2 3D Graphics

Figure 4.7: 3D graphics in conjunction with a texture map is used to represent a scalar field
coincident with a 2D flow.

In addition to color, a third dimension can be employed in order to incorporate additional

parameters into a single visualization. A 3D graphical approach can be useful to

discriminate spatially discrete zones of a scalar field thatmay overlap with another. The

combination of 3D graphics and texture is illustrated in figure 4.7 to represent components

of an experimental PIV dataset.

Swirl strength is a scalar field limited to positive values. Because high swirl strength

typically appears in discrete circular areas that lie within zones of significant vorticity,

it is a reasonable candidate to be represented with height ina 3D plot. Figure 4.8

shows parameters with color and brightness, along with height, to represent additional
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features: shades of green correspond to regions of high Reynolds shear stress, blue and

red correspond to negative and positive zones of wall-normal vorticity, brightness is used

to emphasize the coherent regions of low streamwise velocity identified by the feature

extraction algorithm, and height represents swirl. This image shows that the discrete swirl

zones can be embedded within longer continuous zones of strong vorticity. Also, the use of

height to represent swirl helps emphasize that these zones can surround streamwise streaks

of low momentum fluid with significant Reynolds stress.

Figure 4.8: The 3D component of height is used to represent the swirl scalar field in a
multi-valued PIV dataset.

There are several issues or limitations inherent with usingheight to represent a scalar field.

One issue is that making the domain 3D creates the opportunity for data to be occluded.

Interaction through virtual reality devices or rotating the scene can help overcome this

problem. Another limitation is that the shading and shadowsthe are necessary in order to

give spatial cues for 3D perception can interfere with the accurate perception of other data

fields represent in color or texture.

4.3 Luminance and Contrast Analysis

The role of the luminance component has a prominent effect onhow features in an image

are perceived [85]. Luminance is defined as the measured amount of light coming from a

region of space [84]. In this chapter, we refer to luminance as the perceived reflectance of
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a region – a white surface is light while a black surface is dark. This quantity is sometimes

also referred to aslightnessor brightness[20].

Contrast is determined by the difference in the color and brightness of the light reflected or

emitted by an object within the same field of view. Formally, contrast is calculated as

C = Lmax−Lmin
Lmax+Lmin

WhereLmax is the maximum luminance value andLmin is the minimum luminance value

within the region.

Manipulations of mean luminance or contrast have the ability to enhance characteristics of

an image with the intent of representing a scalar value in addition to the flow data already

depicted by a texture. We illustrate these methods on LIC images.

4.3.1 Contrast

Figure 4.9: Manipulation of contrast is used in this image torepresent a scalar distribution
(left). Local differences between black and white values are used to portray the calculated
quantity of uniform momentum. Two histograms taken from different regions of the
contrast image (right).

Differences in the contrast between the blacks and whites can be used to effectively convey
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information about a scalar distribution [61]. We describe amethod that alters the contrast

within the image in accordance with the magnitude of a scalarfield.

Once an original LIC image is created to display a flow field, contrast can be manipulated

by altering the grey-level values in an image depending on the values in a scalar field

that is intended to be displayed. At the locations of prominent scalar values, we reassign

pixel values to darker greys or lighter whites than the original. The default values are

first analyzed to determine if the pixel value is closer to white or black. The pixel value

is then scaled based on the magnitude of the scalar and the previous value of the pixel.

A significant scalar value scales a moderately white pixel toan extremely white pixel,

and a significant scalar value scales a moderately black pixel to an extremely black pixel.

Similarly, if the scalar value is not significant, the algorithm scales the pixel value to be

closer to the average intensity. The resulting intensity histogram for the image is different

than the original LIC histogram – the contrast within the image at significant scalar value

is increased while the contrast within the image at insignificant scalar values is decreased.

However, the average pixel value over the new image will remain similar to that of the

original. An example is shown in figure 4.9.

Images created in this manner can work to effectively display a scalar distribution because

the human visual system is sensitive to different levels of disparity between the blacks and

whites in an image. In figure 4.9 (left), local differences between black and white values

are used to portray the calculated scalar quantity of uniform momentum. The histograms

displayed in figure 4.9 (right) display pixel representations taken from two separate regions

of the image. The left histogram depicts the intensity distribution of a low-contrast region.

The rightmost histogram depicts a high-contrast region. Both histograms suggest that

the average pixel value is in the middle of the range as they are centered and symmetric

across the range of pixel values. However, high-contrast regions require the entire range of

intensity values while a much more narrow range is utilized in low-contrast regions. Using
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the described technique, a continuous scalar distributioncan be encoded over a texture

image through variations in the internal dynamic range of the pattern.

4.3.2 Mean Luminance

Figure 4.10: (left) Manipulation of mean luminance is used in this image to represent
a scalar distribution. (right) Two histograms taken from different regions of the mean
luminance image showing that the shapes of the histograms remain similar, and only the
average luminance value is changed.

Mean luminance refers to the average intensity value of the pixels in a given region. This

quantity is different than the contrast within the image as contrast is a measure of the

differencesbetween the light and dark values of the image. Mean luminance is a measure

of the overall brightness in a region. We describe a method that alters the mean luminance

within the image in accordance with the magnitude of a scalarfield.

Once an original LIC image is created to display a flow field, the mean luminance of the

image can be manipulated by altering the grey-level values in an image depending on the

values in a scalar field that is intended to be displayed. The average luminance values of

a grey-scale image can easily be altered by adding or subtracting a nominal amount from
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each of the pixels. The default 8-bit grey-level values of a LIC image generated from a

random white-noise input texture typically have an averagevalue close to 127. The average

luminance of the image is changed by adding or subtracting anamount proportional to the

scalar distribution. We ensure the luminance value does notgo out of range by applying

the following formula whereα is an arbitrary fixed value determined by the user.

Inew(x,y) = α ∗scalar(x,y)+(1−α)∗ Iold(x,y)

The α value serves as a balance between the representation of the scalar value and the

image in which the scalar value is superimposed. Anα value close to 1.0 will emphasize

the scalar value at the cost of under-representing the underlying LIC image. Anα value

close to 0.0 will essentially reproduce the LIC image without much influence from the

scalar field.

Applying this formula essentially shifts the histogram with respect to the scalar value while

maintaining the overall shape. Using this technique, the contrast between the black and

white values of lines remains the same as in the original image and the average luminance

value encodes the scalar distribution. Luminance values inan original LIC image are

shifted according to the values in an auxiliary scalar distribution. Figure 4.10 illustrates the

effects of using mean luminance to represent the scalar quantity of uniform momentum.

The histograms displayed in figure 4.10 (right) display pixel representations taken from

two separate regions of the image. The left histogram depicts the intensity distribution of a

darker region. The rightmost histogram depicts a lighter region. Of note is that the shape

of both histograms are similar, and only the average luminance value is changed. Using the

described technique, a continuous scalar distribution canbe encoded over a texture image

through variations in the mean luminance value of the pattern.

Care must also be taken to consider the nonlinearity of intensity perception when using this

or any other intensity remapping [48].
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4.3.3 Combining Mean Luminance and Contrast

A problem that is inherent with representing multi-valued data is creating an image that

accurately depicts multiple distributions in such a way that displaying one distribution does

not interfere with the perception of another distribution.This process is further limited by

the resolution of the image as there exists a finite number of pixels that can be colored to

create the desired visual effect.

In the case of contrast and mean luminance, the two quantities appear to be closely

related. Efforts to create a unified image in which two different scalar quantities are

differentiated as represented with mean luminance and contrast have resulted in an

unsuccessful and ambiguous image. One explanation for thisresults from examining

the respective histograms of the images. As previously described, a scalar field can be

represented using the internal contrast by altering the dynamic range of the image while

maintaining the same average luminance value. Similarly, ascalar field can be represented

using the mean luminance by adding or subtracting an amount respective to the scalar

values to the pixel value in the image. In order to combine thetwo techniques, however,

both contrast and mean luminance need to be individually applied to the same image. The

underlying problem is that a region that utilizes a high-dynamic range has little opportunity

to change the average luminance values as it requires the entire range of values to depict

the range of contrast. Thus, it would not be possible for a region of high internal contrast

to portray areas of differing mean luminance, and combiningthe two techniques would not

result in an effective representation of both scalar fields.

We next focus our efforts on visualization techniques that allow for multiple fields to be

represented and perceived simultaneously.
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4.4 Streamline Density

Controlling streamline density facilitates several effective methods of visualizing 2D vector

fields. Here we discuss a few variations on previous methods [32, 75] that present

information over vector fields by controlling the density ofthe placement of streamlines.

Our methods allow further techniques to visualize additional distributions on these images.

Figure 4.11: Streamline density is increased from left to right to illustrate how a scalar field
can be depicted.

A scalar field can be visualized in conjunction with a vector field by allowing the transition

within an image from sparse streamlines to dense streamlines. By first creating a sparse

and a dense representation of the vector field, the final imagecan be composited by alpha

blending the images together based on the values of a scalar field. Figure 4.11 shows, from

left to right, an image of sparse streamlines transitioningto dense streamlines. The image

consisting of sparse streamline will inherently have a muchlower average luminance value

than the dense streamline image. Thus, the final effect of blending the images is essentially

manipulating mean luminance to depict the scalar field.

A method to create a sparse texture that accurately reflects avector field is to begin by using

a random distribution to select seed values for streamline calculation. Once a starting point

has been selected, the streamline is calculated in both the positive and negative direction.

Following [32], the streamline is traced in each direction until one of the following occurs:
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Figure 4.12: A sparse texture of evenly distributed streamlets (left). A sparse texture in
which streamlines are not terminated as a function of the proximity to other streamlines
(right). This enhances bifurcation lines in the flow.

a singularity is reached, the streamline reaches the edge ofthe domain, or the streamline

comes within some user-defined distance of another streamline that has already been

calculated. Intensity values are assigned beginning at thenegative end of the streamline.

The starting intensity is randomly selected within the range of 0 to 255 and subsequent

pixels along the calculated streamline in the direction of flow are assigned monotonically

increasing intensity values, wrapping around from 255 to 0,until the end of the streamline

is encountered. Streamlines whose total length is less thana user-specified minimum are

not colored in. A result of this technique is shown in figure 4.12 (left).

If the restriction of proximity is not enforced, a remarkably different image results. The

initial pixel selected at random is checked to determine if another streamline has been

computed within a defined proximity. Once a streamline has been initialized, the entire

streamline gets defined and colored in regardless of whetherit comes too close to another

streamline that has already been computed. The effect is that areas where streamlines

converge are indicated by a much more dense coverage of streamlines than in the previous

technique. As seen in figure 4.12 (right), this increased density highlights the interface
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between converging flow regions and can be interpreted as a bifurcation line.

We next discuss a technique that uses the properties of luminance, contrast, and a 3D

lighting equation to encode the out-of-plane component of a3D vector field over a 2D

domain.

4.5 Embossing

Applying 3D shading or lighting effects, such as bump mapping or embossing, to 2D

images can be an effective method for producing the perception of three dimensional shape.

For the images presented in this section, the additional distribution that we have chosen

to visualize is the out-of-plane vector componentw. The characteristics of this field is

significant to various theories and other derived quantities that are valuable for analysis

of the turbulent flow data. However, this quantity is often ignored when producing 2D

images of 3D vector fields because it is more convenient to simply portray only the in-

plane components. With embossing, we can represent the vector field componentw in a

manner that everywhere reflects its depth distance (both positive and negative) from the

base plane.

4.5.1 Light Direction

Light direction plays an important role with regard to the perception of depth. Embossing

algorithms simulate a standard lighting equation with a single point light source. While

this method is highly effective in many situations, artifacts can arise when attempting to

emboss vector fields, particularly when the vectors are oriented in the same direction as the

light source. To sidestep this problem, we implemented the embossing using two different

lights in the plane: one from a source directly above the image, and one from a source
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Figure 4.13: Embossing with different light source angles on streamlines (top row) and
glyphs (bottom row). Left: Light source from directly above(90 degrees). Vectors
vertically oriented aren’t illuminated well. Middle: Light source from 45 degrees. In
this case, the representation of the diagonally oriented vectors suffers. Right: Both light
sources combined.

that is above and to the right of the image, i.e. at a 45 degree angle to the image. The

combination of these directions gives the impression of a broad light coming from “above.”

This produces the visual effect of the embossed image being raised from the surface. We

create the composited image on a pixel-by-pixel basis by sampling from the appropriate

input image, depending on the orientation of the flow at each point (taking care to always

sample from an image that was created using a light source direction that is not aligned with

the vector field). Regions of transition are alpha blended between the two images (figure

4.13).

An embossed image that represents a scalar distribution that contains both positive and

negative values can be created by combining two images in thefollowing manner. First, an

image is created by applying the embossing algorithm with a light source from above, and

then a second image is created with a light source from below.The final image is produced

by selecting pixel values from the image lit from above wherever the quantity is positive

and pixel values from the region lit from below wherever the quantity is negative. The

desired effect is that positive values appear to be raised and negative values appear to be
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Figure 4.14: (left) An embossed and depth-shaded image representing the gain-adjusted
magnitude of the out-of-plane component of a vector field. (right) Overlying a sparse
streamline texture on an embossed representation of the out-of-plane vector component.

sunken (figure 4.14 left).

The first method we present to depict the 2D vector field and additional out-of-plane

component is displayed in figure 4.14 (right). This image is created by overlaying a sparse

texture image and the embossed image of figure 4.14 (left) in such a way that only the

values in the former that are lighter than the values in the latter get written to the resulting

image. While simple, this technique allows us to effectively visualize both the in-plane and

out-of-plane velocity components together in a single image.

4.5.2 Representing Values with Embossed Streamlines

To represent a scalar distribution through the use of embossed streamlines, the magnitude

of the scalar value must be encoded in the depth of the embossing. The process is started

by creating a discrete number of embossings of the image at differentdepth levels.

If the distribution desired to be displayed has positive andnegative components, then two

images are created for each level lit in opposing directions– one from above and one
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Figure 4.15: Different levels of embossing applied to streamlines to represent the
magnitude of an auxiliary scalar distribution. Top row: light from above. Bottom row:
light from below.

from below (figure 4.15). We found a linear interpolation between only a few levels to be

sufficient to create an effective visualization of the data.

The final image representing the flow field and scalar distribution is created on a pixel-by-

pixel basis depending on the magnitude of the scalar component at each point. The value

of the scalar field is queried at each point and a linear combination of the appropriate levels

of embossing for the respective direction is recorded. Thisprocess is continued until all

pixels are covered (figure 4.16).

4.5.3 Combining Embossing with Streamlines

A second and more sophisticated approach to representing the flow field in conjunction

with the scalar distribution begins with the creation of an embossed streamline image of

the vector field. The embossed streamline image is added to the scalar representation once

again in a pixel-by-pixel fashion. Once the two pixel valuesare added, the background

color from the embossed streamline image is subtracted. This results in an embossing

of the original embossed scalar field as values that were below the average are subtracted

from the original image and values above the average are added to the original image (figure
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Figure 4.16: Embossed streamlines.

4.17). Any values outside the range of 0 or 255 are effectively clamped.

4.5.4 Limitations

Representing a scalar distribution using this embossing technique is largely impressionistic

and contains a few limitations. Namely, the ability to perceive numerous discretized levels

of a scalar variable is limited. While all images that reflectscalar values are limited in this

manner to a degree, the embossing technique utilizes a number of surrounding pixels and

different shades of grey to produce a depth effect. The combination of space and limited

number of different levels of grey that can be effectively used to produce the depth effect

significantly limit the number of perceptually distinguishable levels using this technique.

Additionally, this technique is best employed when the datais relatively continuous and
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Figure 4.17: Embossed streamlines on an embossed representation of the out-of-plane
vector component

does not contain adjacent sporadic positive and negative jumps. This would cause the

embossed streamlines to appear segmented in a manner that does not accurately reflect the

underlying flow field.

4.6 Discussion

In this chapter we addressed several methods in which a scalar fields may be visualized in

a multi-valued dataset.

We have showed that color can be used to represent multiple scalar fields effectively.

However, the number of colors that can be overlapped withoutambiguity is limited. Color
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weaving provides an alternative to traditional color compositing by allowing multiple

colors to be closely interwoven via the assignment of distinct separate hues to individual

streamlines, rather than blended. Thenumberof different colors that are distinguishable

when in proximity is an interesting question and a possible direction for future research.

How the visualization is interpreted by the human perceptual system is a significant

component of creating a “successful” visualization. We have shown how luminance and

contrast can be manipulated within an image to reflect a scalar field, and have also presented

a suggestion of why the two techniques are mutually exclusive for representing multi-field

data. The human perceptual system, however, is not always a limitation to an effective

visualization. By using the 3D perceptual effects of an embossing algorithm, we have

introduced a method that can represent a scalar field within a2D flow field. Effective and

accurate visualizations often result through a fundamental understanding of how the human

perceptual system interprets visual data.
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Chapter 5

Textures

Textures have traditionally been used to visualize vector fields for the purpose of analyzing

the form and behavior of flow consistent with theoretical models and to infer the underlying

behavior of experimentally-generated flow fields. The use oftextures allows for a consistent

and highly-detailed representation of a vector field, allowing an observer to both analyze

and better understand the dynamics of fluid flow.

Flow textures have traditionally been limited to synthesized renderings where additional

attributes are displayed with color, differences in spatial frequency, or contrast enhancements

and are added in an artificial manner. In this chapter, we present methods to utilize the

qualities and attributes of textures to visualize scalar distributions and vector fields related

to a planar velocity field.

A goal of this research is to better understand how the properties of textures can effectively

be used to represent various components of flow data. Naturaltextures have the ability

to provide a richly diverse set of possibilities that allow various aspects of the underlying

flow field to be visualized. We introduce textures to convey this information in a way that

preserves the integrity of the vector field while also takingadvantage of the many perceptual

dimensions that textures can contribute such as regularity, directionality, contrast, and
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spatial frequency.

5.1 Texture Mapping Streamlines

With few exceptions, LIC textures are predominately used inflow visualizations. While

effective, LIC textures lack the richly diverse set of possibilities that can be obtained

through the use of natural textures. In this section, we illustrate the capabilities of textures

as they are applied to streamlines.

5.1.1 Geometry

Applying a texture to a streamline requires that the streamline be extended to include width

as textures are inherently 2D and do not project well to streamlines or single pixels [9, 83].

We construct athick streamlineby first calculating a 1D streamline given the vector field

that defines the flow to be visualized. The streamline is then given width by considering

the normal component to the streamline at each point. A user-specified width is multiplied

Figure 5.1: A thick streamline is constructed by first calculating a 1D streamline (top). The
normal component at each point in the streamline is multiplied by a user-defined width to
calculate the coordinates for the thick streamline (bottom).
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by the normal component to give the location for each point ofthe thick streamline. This

amount is added to both sides of every pixel in the streamlineresulting in a thick, 2D

streamline (figure 5.1).

The coordinates of the thick streamline are used to construct polygons in which a texture

can be easily applied using standard texture-mapping techniques. Segmenting the thick

streamline into polygons allows a texture-mapped streamline to effectively bend and curve

in any direction.

An adaptive step size is used during the streamline integration computation to construct

polygons that can effectively represent the streamline around areas of high curvature [66].

Using the fourth-order Runge-Kutta formula and given a user-defined error tolerance, an

adaptive step size approach chooses a large enough step sizeto define each polygon while

observing the tolerance specified by the user. The effect of this approach is that smaller

polygons are generated in areas of high curvature (figure 5.2).

Figure 5.2: Polygons are generated according to an adaptivestep-size algorithm that allows
for smaller polygons to be generated around areas of high curvature.
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5.1.2 Flow Fields

Controlling streamline density allows an entire field of thick streamlines to be created and

equally spaced so that applied textures can be perceived. Turk and Banks [75] first address

the issue of streamline density. We employ the algorithm developed by Jobard and Lefer

[32] for ease of implementation and efficiency purposes.

Once an initial seed point in the 2D domain is selected randomly, a streamline is calculated

in both the positive and negative direction. The streamlineis traced in each direction until

one of the following occurs: a singularity is reached, the streamline reaches the edge of the

domain, or the streamline comes within some user-defined distance of another streamline

that has already been calculated. A new seed point is generated by randomly selecting a

point on the defined streamline and moving it a distance greater than the width of the thick

streamline in the direction normal to the flow at this point. Controlling the distance of a new

seed point from the previous streamline allows flexibility in the density of the streamlines

of the resulting image. To generate an image of dense streamlines, the seed point should be

at a distance that is approximately the thick streamline width from the previously defined

streamline. A distance that is greater than the streamline width will create more space

between streamlines and result in a sparse final image. The algorithm continues by placing

seed points in this manner until no more valid seed points canbe found.

We have found it beneficial to construct streamlines with maximum possible length when

creating the final images presented. Streamlines that do nothave a sufficient length are not

displayed and another seed point is calculated.

Several artifacts can occur when texture-mapping streamlines. To avoid artifacts that may

occur with a repeated texture on the same streamline, a sufficiently large texture sample

is used. To avoid artifacts that may occur with repeated texture being applied at the same

interval on neighboring streamlines, a random texture offset is used when constructing

the first texture-mapped polygon of the thick streamline. These artifacts could also be
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avoided by synthesizing the texture separately or along each streamline. Additionally,

where portions of streamlines overlap, pixels are assignedan opacity value of zero, giving

priority to streamlines already defined. The result is the ability for streamlines to effectively

“merge” due to convergence or divergence of the flow but not toobstruct a previously

placed streamline (figure 5.3).

Figure 5.3: Using texture-mapped thick streamlines to visualize a flow field.

5.1.3 Texture Outline

Texture-mapping a natural texture to a field of thick streamlines may not create an effective

visualization if the orientation of the applied texture is not obvious. Figure 5.4 (top) shows

the result of applying an anisotropic texture to streamlines and the ambiguous orientation of

streamlines that results. The orientation of the streamlines can be specified by combining

the texture with an outline of the calculated streamlines. The outline of the streamlines is

constructed by mapping anoutlining textureto the calculated streamlines defined by the

vector field. The outlining texture consists of a luminance ramp, from black to white,
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emanating from each side of the texture. The intention is to mimic a diffuse lighting

effect that would be created if the thick streamline were three dimensional and tubular

in shape. The effect of applying this outlining texture to streamlines is displayed in figure

5.4 (middle). Finally, the two images can be overlaid allowing the orientation of the flow

field to be displayed (figure 5.4 bottom).

It is important to limit the proximity between streamlines in creating the outlined

streamlines texture. If the outlines of thick streamlines are allowed to overlap, areas of high

overlap produce distracting regions when the luminance ramp of the streamline is abruptly

halted where one streamline overlaps another. To avoid thisartifact, the computation of a

streamline is stopped if it approaches another streamline within one half the width of the

thick streamline.

Figure 5.4: An illustration of texture outlining used to disambiguate streamline orientation.
Top: a birdseed texture applied to streamlines. Middle: theoutlining texture applied to
streamlines. Bottom: combination of the above two images.
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5.1.4 Texture Attributes

We have the ability to show a scalar field in addition to the flowfield by changing how

the texture is mapped to the streamline. The ability to choose texture parameters freely

independent of polygonal geometry provides a great amount of flexibility in depicting

scalar quantities.

Figure 5.5: Texture parameters can be adjusted to display a scalar distribution in addition
to the vector field. Theu component of the texture is mapped according to an arbitrary
scalar component that increases from the top of the image to the bottom.

Starting at the beginning of the streamline, the geometric coordinates for the thick

streamline are calculated and vertices for the first polygonare defined. The length of the

texture,u, or the width of the texture,v, can be scaled according to the scalar value and

applied to the polygon. Texture continuity between polygons is preserved by ensuring that

each polygon starts with the texture coordinates most recently used by an adjacent polygon.

Figure 5.5 shows a pine texture representing a scalar distribution, ranging from low to high

from the top of the image to the bottom, by scaling theu component of the texture while

thev component remains constant.

Proportionally varying both theu andv components of the texture influences the relative
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Figure 5.6: An illustration of using texture attributes to represent a scalar distribution.
The scale of the texture is directly related to Reynolds shear stress – a scalar field used to
characterize regions where drag is generated in turbulent boundary layers.

scale of the texture. This technique creates a difference inthe spatial frequency of the

texture, reflecting the magnitude of a scalar distribution.Figure 5.6 shows how the scale of

a texture can be used to display the magnitude of Reynolds shear stress – a scalar field used

to characterize regions where drag is generated in turbulent boundary layers.

5.1.5 Outline Width

In addition to scaling the texture to demonstrate a scalar value, the scaling can be enhanced

by adjusting the width of the streamlines according to a scalar quantity [67]. In figure 5.7,

the width of the streamlines and scale of the texture correlates to velocity magnitude. In

the case of varying streamline widths, the scalar magnitudedetermines the streamline width

and must be taken into account when determining the distancebetween two streamlines.

A difficulty introduced when streamline width fluctuates is how to handle the discontinuities

when thick streamlines come within the proximity of anothercalculated streamline. The

method previously presented suggests that the streamline be terminated. Unfortunately, this

leads to an unnatural termination of the streamline and a visual artifact. For this reason,

we clamp the thickness of the streamlines to a constant thickness and utilize the texture
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Figure 5.7: Varying the streamline width in addition to scaling the texture can accentuate
an underlying scalar value.

scale to represent various quantities. An additional limitation is that allowing the outlining

streamlines to increase and decrease in size determined by scalar values accentuates the

attributes of the texture but reduces the ability to perceive the underlying flow field in

combination with the scalar field.

5.2 Texture Stitching

Standard texture-based techniques typically use filter kernels to convolve an input texture

and do not utilize streamlines as final part of the image. The next section illustrates a

common problem that occurs when an associated scalar variable is visualized along with the

vector field using such convolution techniques. Thetexture stitchingalgorithm presented is

designed to encode a scalar variable using spatial frequency while maintaining the fidelity

of region boundaries defined by the data.

Figure 5.8 illustrates the classical problem with attempting to apply a color wash to an input

texture, before running LIC, to indicate the distribution of values in a scalar field associated
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Figure 5.8: An illustration of the problem with trying to usecolor to indicate regions of
interest pre-LIC. Left: color wash applied to the input texture. Middle: results after running
LIC – the region definition is not well preserved. Right: results of applying the color wash
post-LIC. The goal of texture stitching is to achieve the latter effect with multi-frequency
texture patterns.

with the vector data. The effect of the LIC is to smear out the colors, distorting the

appearance of the scalar distribution in the final image and impeding efforts to accurately

interpret the value of the distribution from the value of thecolor at any particular point. For

this reason, color encoding is universally applied post-LIC, unless it is explicitly desired to

use the color to demonstrate the effects of advection [64]. Being aware of these issues with

respect to the use of color, and wishing to use spatial frequency to encode the presence of

discrete regions of interest in our data, we sought to develop texture stitching– a post-LIC

variant of the pre-LIC multi-frequency method proposed by Kiu and Banks [41] in which

it would be possible to preserve the fidelity of region boundaries implicitly indicated by

spatial frequency differences in the texture pattern in thefinal image, while avoiding the

introduction of unnecessary discontinuity artifacts.

Following Kiu and Banks [41], the first step in our approach isto construct a set of

correlated noise texture images by low pass filtering an initial high frequency noise pattern

and equalizing the intensity histograms of the results to the intensity histogram of the

original. For our application we were primarily interestedin using spatial frequency to

indicate the locations of computedregions of interestwithin a larger surrounding flow

field. Thus, it is necessary to generate two noise texture patterns (high and low). To create

the images in this section, we applied a Gaussian filter of width 20 and standard deviation
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2.0 to the white noise shown in figure 5.9 (left) to achieve figure 5.9 (right).

Figure 5.9: Samples from input textures used in our texture stitching technique. Left:
the high frequency noise input texture. Right: the low frequency pattern achieved after
Gaussian blurring and histogram equalization.

There is a direct correlation between the size differences of the spots in the two input

textures and the filter kernel length differences that are required to achieve output textures

that will appear to differ by only a uniform (isotropic) scaling factor. Although it is not our

intention to use the filter kernel length to encode any information about the flow, a larger

filter kernel length with the low frequency input texture is necessary in order to make the

lines in the low frequency output texture appear to have the same length-to-width ratio

as the lines in the corresponding high frequency pattern. Since the lower frequency lines

are less effective at conveying details of the flow orientation, we decided to use the low

frequency texture to demarcate the regions of interest, which are characterized by uniform

momentum and low velocity.

We proceed by using the high and low frequency noise input textures to create two separate

LIC images. We also create a binary mask corresponding to theresults of our trial region

detection algorithm [18] – one of the goals of the visualization effort is to determine the

suitability of the results produced by our region detectionmethod and possibly to provide

insight into how it might be refined to achieve greater effectiveness. We use the binary

mask to composite the results post LIC. The results of our method are shown in figure 5.10,

second from the left . Results obtained using the original multifrequency LIC method are
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Figure 5.10: Top: the region of interest mask. Bottom: images are obtained, from left
to right, using: the Kiu/Banks algorithm; texture stitching with histogram equalization;
texture stitching plus contrast enhancement of low frequency regions; texture stitching
using unrelated input patterns.

also shown in figure 5.10 (far left) for comparison.

One issue of interest whether it might be desirable, or not, to minimize the incidence

of contrast differences between the low frequency and high frequency texture regions.

Contrast will inevitably be lower for LIC images obtained from higher frequency input

patterns, unless there is a huge reduction in filter kernel lengths, because more different

grey values will be averaged together, bringing the result closer to the mean than in the case

of the low frequency pattern. Retaining the ability to equalize contrast, which can easily

be done in the texture stitching approach, reserves the potential to use contrast differences

to encode a different scalar distribution. Figure 5.10, third from left, shows the results of

performing texture stitching without contrast equalization. Here the region differentiation

becomes more prominent. However, the general continuity oflight and dark patterning

remains consistent between the regions, which would not be the case if unrelated input

textures were used (figure 5.10, far right).

The main characteristic of texture stitching is that it allows region boundaries to be
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noticeable in the final image. When compared to the multi-frequency LIC approach taken

by Kiu and Banks, the texture stitching approach may not be suitable for applications in

which one hopes to approximate a continuous series by a finiteset of different spatial

frequency patterns, which was the target application for Kiu and Banks.

5.3 Multiple Textures

Texture-mapping streamlines gives great flexibility in thenumber of different appearances

that a vector field representation can have. Figure 5.11 shows a sample of how natural

textures are capable of many different appearances when applied to a circular flow. We can

use this flexibility and diversity of appearance to represent multiple quantities within the

same image. In this section, we present techniques to use multiple textures within an image

to represent multiple vector fields and to delineate regionswithin a flow image.

5.3.1 Texture Splicing

Allowing different appearances within an image can be useful in preserving the fidelity

of region boundaries while avoiding the introduction of discontinuity artifacts. The

goal of texture splicingis to produce an image that achieves a precise depiction of the

spatial extents of discrete regions while not detracting from the perception of flow. In

the examples illustrated here, the visualization is designed to delineate boundaries of

significant structures orregions of interestwithin a 2D image of turbulent flow.

The process of creating the composited image can be conceptualized in three separate steps.

First, two textures are selected and the same vector field is used to create two separate flow

images. Next, when necessary, an outlined texture of the same computed streamlines is

created and overlaid on both images to clarify streamline orientation. In order to avoid

discontinuities of the flow, it is important to have both texture images and the streamline
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Figure 5.11: Examples of the diversity of natural textures that can be applied to a vector
field. A circular flow is used demonstrate each example.
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outlines generated from the same computed streamlines. Lastly, the images are composited

or “spliced” on a pixel-by-pixel basis, as each pixel in the final image is sampled from the

respective source texture determined by the location of thepixel with respect to the region

to be delineated. For implementation purposes, it is advantageous for all three conceptual

steps to be combined into an efficient one-pass algorithm in which the textures and texture

outline are combined then applied along the streamline onlyin the appropriate region.

Figure 5.12 shows how subtle differences in greyscale textures allow for a specific region

to be highlighted. In this case, a region of significant swirlstrength is constructed using a

shell texture. A texture comprised of coins, similar in sizeto the shell texture but different

in luminance properties, is used for the other texture whichallows for the swirl center to be

visualized clearly. The spiraling streamlines around the area of swirl strength denote that

the relative speed of the observer matches the convection velocity of this particular swirl

center.

Figure 5.12: Top: Binary region of high swirl strength – a quantity used to identify coherent
vortices. Bottom: A greyscale coin texture and shell texture are spliced to delineate the
region of high swirl strength.
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Figure 5.13: Top: Boundary regions of potential vortex packets defined by a feature
extraction algorithm. Bottom: A birdseed texture and a stone texture are spliced to specify
the boundaries.

There is great flexibility for image appearances using different natural textures. Figure 5.13

illustrates an example using two unrelated textures, a birdseed texture and a stone texture.

The region delineated by the stone texture represents boundaries of a potential vortex packet

identified with a specific feature extraction algorithm [18]. The size of the components

and luminance of each texture chosen are similar so they are not prominent factors in the

perception of the difference in texture. While the two textures are most differentiable by

color, the regions are still noticeable when the image is viewed as a greyscale image. The

natural qualities allow each texture to be distinguishablewhile the flow of the streamlines

remains easily perceivable.
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5.4 Discussion

With few exceptions, LIC textures are predominately used inflow visualizations. While

effective, LIC textures lack the richly diverse set of possibilities that can be obtained

through the use of natural textures. In this chapter, we haveshown the flexibility of textures

as they can be mapped in a variety of ways to show properties offlow field.

Mapping textures to calculated thick streamlines providesa computationally efficient

method for creating a texture-based flow image. The user is given a wide range of flexibility

to create a visually rich image using this technique. We havealso introduced a method to

depict flow direction in the case of anisotropic textures.

Texture stitching and texture splicing allows for a precisedepiction of the spatial extents of

a discrete region without detracting from the perception offlow. Developing techniques

using more sophisticated methods for combining textures within flow visualization to

represent multi-field data is a potential direction for future research.
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Chapter 6

Multiple Vector Fields

This chapter presents strategies for developing effectivemethods for the visual representation

of multiple co-located vector fields. One of the most challenging aspects to visualizing

multi-field data is creating an image that accurately reflects the key physical properties of

all of the fields in a way that does not allow for a bias towards one distribution. These

methods are designed to allow each field to be understood and analyzed both individually

and in the context of the other.

We begin by exploring a variety of different techniques thatallow for visual representations

to be combined in order to represent two vector fields simultaneously. Several existing

techniques for visualizing single vector fields are examined and combined to demonstrate

the effectiveness of simply compositing representations to produce an image representing

multiple fields. We also consider how elements from vector fields can be distinguished or

grouped preferentially through techniques of embossing orusing different textures.

We examine the method of using streamlines to represent flow fields and how streamlines

from different vector fields can be combined to effectively represent multiple vector fields.

We develop new methods, based on methods created for a singlevector field visualization,

to effectively use streamlines in a manner that allows both vectors fields to be viewed
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simultaneously.

Finally, many scientific applications involve data in whichthe most challenging aspect

of interpreting the results is determining how separate fields are related. The modeling

of 3D magnetohydrodynamic light supersonic jets and the study of coherent structures in

turbulent boundary layers are two such applications. Illustrations from these applications

are later presented in this chapter.

6.1 Integrated, Multiple Vector Fields

The visualization of multiple co-located data fields can be done in several simplistic ways.

One method is to display the individual distributions in a side-by-side manner, so that each

field can be seen clearly and independently. However, spatial correspondences between

distributions are not easily revealed using this technique. Another approach is to show

multiple fields sequentially in the same space and allow the user to quickly alternate

between the images. With this approach, however, it is difficult to obtain a reliable,

integratedunderstanding of the multiple fields. This research investigates new methods

for the simultaneous representation of multiple fields in a manner that leads to a further

understanding of correspondences or interrelations between two vector fields.

6.1.1 Classification of Single Vector Field Techniques

Mining the knowledge base of previous visualization research yields important findings

and insight to assist the research of our specific applications. Using this insight, we are

able to re-construct, manipulate, and expand upon the existing state-of-the-art in order to

further the process of knowledge discovery related to specific tasks and conditions.

Many different techniques have been developed for the visualization of a 2D flow. Various
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visual techniques have characteristics that allow for different components of the flow to

be more visually salient [45]. We classify existing 2D vector field flow visualization

techniques into one of three visually distinct categories:texture-based, line-based, or

glyph-based.

Texture-based techniques are characterized by a consistent, highly-detailed, and dense

representation of a vector field. As presented in section 2.1, many texture-based techniques

have been developed for the visualization of 2D flow as it allows for the fine details of a

vector field to be easily displayed and analyzed [4, 31, 79].

Line-based techniques involve the display of elongatedstreamlines– segments that are

everywhere tangent to the vector field. These images are fundamentally different than the

images created with texture-based techniques as streamlines can be visually traced over

a long distance, and line-based images are more sparse than textures. While streamlines

give a global sense of flow by depicting paths along the vectorfield, flow direction is not

always apparent. Additionally, locating an advantageous small number of critical lines

representing the flow can be a challenging problem.

Glyph-based techniques are characterized by the use of repeatable icons that can express

various types of information about the flow, including flow orientation. In a sense, line-

based techniques can be thought of as a special case of glyph-based techniques. The most

basic glyph technique is the use of hedgehogs (sometimes referred to as vector plots) – short

line segments or arrows aligned with the flow direction at regularly or randomly distributed

locations. Glyphs provide the ability to depict flow direction by using the glyph shape or

a luminance ramp. We also include in this category techniques that involve placing glyphs

along calculated streamlines.
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6.1.2 Combining Multiple Images

Transparency or layering is one of the most effective methods to portray relationships

between overlaying components. Kirby et al. introduced a method inspired by the layering

techniques used in oil paintings to visualize components of2D flow data [40]. Interrante

has used transparent stroked textures on 3D surfaces superimposed over underling opaque

structures [28]. Weigle et al. demonstrated a texture generation technique, based on the

layering of oriented slivers, using orientation and luminance to encode multiple overlapping

scalar fields [89]. Hotz et al. vary the input texture densityand spot size in addition to

kernel length and overlay sparse LIC images to visualize features of a tensor field [25].

Wong et al. developed a technique that combines elements of alpha channel manipulation,

filigreed graphics and elevation terrain mapping, along with colormap enhancement to

visualize a multi-variate climate dataset [91]. Our research is inspired by these techniques,

and seeks to expand the applications of layering in the visualization of multiple related

vector and scalar fields.

Considering one sample from each of the three visually distinct methods for vector field

visualization (texture, line and glyph) we explore the range of effects that can be achieved

using layered combinations of these approaches to visualize two different, co-located vector

fields (figure 6.1). For the texture-based sample, we use LIC –the most widely used texture-

based approach. For the glyph-based sample, we create an image by repeatedly texture

mapping a comet-like glyph along thick, equally spaced streamlines. This results in a

sequence of glyphs that is continuous in the direction of theflow. The line-based sample

is created using the source code supplied by the authors of anequally-spaced streamline

technique [75].

One of the primary goals in each of the applications is to depict the key physical structures

of one vector field in the context of the key physical structures in another. Therefore, it

is highly desirable to be able to easily differentiate between the visual representations of
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Figure 6.1: Different 2D vector visualization techniques applied to the visualization of two
co-located vector fields.

each field and to easily identify each distribution. This process becomes more complicated

when the same representational technique (e.g. line, texture or glyph) is applied to each

field. While a supplemental visual variable, such as color, could be used to distinguish the

two representations, we would ideally prefer to be able to reserve the use of color for the

communication of related, co-located scalar quantities.

The problem of differentiating between each vector field is illustrated on the left hand side

of figure 6.1. The combination of two texture-based techniques (upper left) provides a
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rich representation in which both vector fields are visible,particularly in regions where the

vector field orientations are not aligned. However, it becomes challenging to distinguish

the two datasets in regions where the orientations are aligned as it is difficult to determine

which field is being represented by which texture at any givenlocation. Both the glyph

and line techniques utilize an inherently sparse streamline spacing that leaves empty space

in the image. Combining two sparse techniques creates a large amount of negative space

which can result in a lost opportunity to represent fine details of the vector fields. When

two glyph-based techniques are overlaid (center left imageof figure 6.1), maintaining good

visual continuity or “good continuation” in the direction of the flow in each field becomes

a challenge, particularly when the glyphs are separated by anontrivial amount of empty

space. When two line-based techniques are overlaid (lower left image of figure 6.1), the

continuity of streamlines is maintained; however, the accidental patterns of intersections

between streamlines in different vector fields can lead to visual artifacts that may cause an

inaccurate perception of the data (figure 6.2).

When a different representational approach is used for eachfield, the primary challenge

Figure 6.2: Combining streamline representations can leadto visual artifacts. Top: Two
streamline images are combined. Bottom: the artifact caused by intersecting streamlines is
highlighted
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Figure 6.3: Different representations can be emphasized byaltering luminance properties
of individual representations prior to image compositing.In the sequence from left to right
of images above, the glyphs become brighter while the texture becomes darker. When
the glyphs are very subtle (left image), the vector field represented by the texture is more
prominent. When the contrast between the white glyphs and the darkened texture is more
obvious (right image), the vector field represented by the glyphs is more prominent.

is to appropriately balance the visual prominence of each representation, so that neither

overwhelms the other in the combined presentation. Figure 6.3 illustrates how different

representations can be made more or less prominent by altering the contrast and luminance

values prior to layering the two images. Similarly, differences in line thickness can be used

to make one vector field more prominent when displayed with another (figure 6.4).

In our experience, particularly good results can be achieved by layering a relatively sparser,

higher contrast, glyph or line-based representation of onefield over a relatively denser,

lower contrast, texture-based representation of the otherfield. The high contrast between

Figure 6.4: Differences in line thickness cause one vector field to appear more prominently
than the other.
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the glyph or line elements and the background or empty space enables them to maintain

their visibility when superimposed over the textured background; the relatively sparse

distribution of the glyph or line elements in the top-layer flow is necessary to enable the

simultaneous, effortless appreciation of the flow that is portrayed on the underlying layer.

Next we describe the methods that we implemented to allow fortwo different representations

to be combined in such a way that each representation remainsdistinct and visually

separable.

6.2 Methods for Combining Images

Figure 6.5: Glyph-texture mapped streamlines overlaid on aLIC texture mapped
background

6.2.1 Overlay

In figure 6.5, two representations are combined using ascreen overlaymethod. This

method is similar to a standard image multiplication operation but operates on the additive

inverse of each input image. Specifically, ifD(x,y) is the output image andA(x,y) and
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B(x,y) are the respective input images, and we assume that each pixel intensity is between

0.0 and 1.0, thescreen overlayoperation is defined as

D(i, j) = 1.0− (1.0−A(i, j))∗ (1.0−B(i, j))

Applying this formula allows the intensities of the underlying texture image to show

through in the places where the overlying glyph image contains empty (black) space. This

technique is most effective when using an image with a black background so the resulting

image is highlighted only in regions where the glyph is placed. Of note in figure 6.5 is

that the two vector fields can be easily distinguished not only where their orientations

are nearly orthogonal, but also in the places (such as the upper right corner) where their

orientations are nearly aligned. It is precisely to enable these sorts of comparisons of the

relative alignments of the two fields that we pursue these investigations of methods for their

combined portrayal.

6.2.2 Embossing

In the overlay method, we primarily rely on luminance differences to distinguish the

overlying glyph or line elements from the underlying texture image. As introduced in

chapter 4, embossing is an alternative technique that can beemployed to distinguish an

overlaid image from an underlying image [77]. In this method, each element of the

overlaying image is given a distinct 3D visual appearance, in order to enable the elements

to perceptually group preferentially with each other and atthe same time jointly segregate

from the background.

Where it is relatively straightforward to emboss streamlines and glyphs, dense textures

typically do not contain a sufficient amount of empty space within the image in which

to portray the result of the shading equation. Textures can be embossed by utilizing
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Figure 6.6: Embossing a texture. Top: A sparse texture in which the effects of an embossing
algorithm can be perceived. Bottom: An embossed sparse texture combined with a LIC
texture.

an algorithm that creates a sparse texture to which the embossing algorithm can then be

applied (figure 6.6). The sparse embossed texture and the dense texture are then combined

to give an embossed appearance to the texture.

An embossed image can be overlaid on another image by adding the intensities in the two

images on a pixel-by-pixel basis, and then subtracting the value that the background color

takes in the embossed image. This is equivalent to increasing the intensity in the non-

embossed image at the points where the intensity in the embossed image is above average,

and decreasing the intensity in the non-embossed image at the points where the intensity

in the embossed image is below average (figure 6.7). The embossing, in effect, gives a

visual distinction of an applied 3D lighting equation and isvisually separable from the

non-embossed image.
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Figure 6.7: Distinguishing different fields by embossing. Top: embossed texture
composited with glyphs. Middle: embossed streamlines composited with texture. Bottom:
embossed glyphs composited with texture

6.2.3 Multiple Textures

Different techniques such as texture, lines, or glyphs can be used to represent a flow field.

These techniques can effectively be combined to depict multiple co-located vector fields

by using the different visual characteristics of each technique and luminance differences to

delineate the individual vector fields. Similarly, embossing one of the techniques allows

for the elements to perceptually group preferentially witheach other and at the same time

jointly segregate from the background. Next, we focus on howindividual attributes of

textures can be used to distinguish two texture-based representations of different vector

fields. We introduce a technique that facilitates the differences in textures to allow for the

analysis of the form and behavior of a vector field within the context of an additional vector

field. The termsoverlayingandunderlyingare used to describe the two layers of vector

field images that comprise the final image.
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Figure 6.8: Two different textures to represent different vector field representations. Top
left: The overlaying image. The pine texture represents thein-plane vorticity vector field.
Top right: The underlying image. The yarn texture represents the in-plane velocity vector
field. Bottom: the composited image. The continuation of thetexture patterns and spaced
streamlines allow for both vector fields to be viewed simultaneously.

Since two textures cannot co-exist at the same location, we employ an equally-spaced

streamline algorithm with a large distance between streamlines to depict the overlaying

vector field. We have found success in using glyph-like textures, such as the pine texture,

to represent the overlaying vector field as the orientation and direction of the vector field

are easy to perceive without the need to use an outline texture (figure 6.8 top left). Both

vector fields in this example have been magnified and interpolated to a scale that allows

the sparse streamlines to cover the domain adequately without sacrificing accuracy by not

displaying streamlines over the entire domain.

The underlying texture has more flexibility in the type of texture and spacing of the

streamlines available to represent the flow accurately. A texture with dense streamlines

works well to display the flow field. In figure 6.8 (top right) a yarn texture is used with
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densely packed streamlines. Theu component of the texture is used to reflect velocity

magnitude which results in the yarn being “stretched” in areas of high vector magnitude.

The composite image of the overlaying and the underlying images is composed on a

pixel-by-pixel basis. Final pixel values are calculated bytaking the normalized product

of respective pixel values from the two individual vector field images. The long texture-

mapped streamlines give a unique and natural continuation to the vector field which allows

for the two vector fields to be visualized simultaneously. Toincrease the perception of both

flow fields within the same image, we have found the best results using two textures that

contain unrelated color schemes.

6.3 Interweaving Streamlines

The method of overlaying one image on top of another image is most effective when the

methods of representation are different for each vector field being displayed. As presented

in section 6.1.2, different representations allow for the different visual attributes of each

technique to be distinguished when combined. However, whentwo streamline images are

combined, it becomes difficult to distinguish the physical structures of one vector field from

the other.

Many algorithms exist for the seeding or placement of streamlines of a single vector field

[33, 49, 75, 92]. The goal of these algorithms is to place streamlines in a way to avoid

visual clutter and accurately depict the key physical structures of the vector field. We

utilize several of these algorithms and present techniquesfor the placement of two vector

fields, representing both fields accurately, with equal prominence, and minimizing the

visual artifacts that may occur when streamlines are combined.
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6.3.1 Streamline Overlay

Figure 6.9: Overlaying streamline images result in the overlaying image being more
prominent than the underlying image. Left: blue streamlines over red streamlines. Right:
red streamlines over blue streamlines

In an effort to illustrate how to visually represent two vector fields simultaneously, we

examine two streamline representations distinguished by color (blue and red). In figure

6.9, two different equally-spaced streamline representations are simply overlaid. The red

streamlines overlay the blue streamlines in the leftmost image; the blue streamlines overlay

the red streamlines in the rightmost image. While the color of the streamlines distinguishes

each vector field appropriately, the vector field in which thestreamlines are “on top” is

more prominent than the underlying vector field. As one of thegoals of this research is

to represent both vector fields without one being more visually prominent than the other,

this simple technique produces an undesirable result. Thisresearch focuses on methods

that will produce images representing two vector fields in which the key structures and

characteristics of both fields can be seen without a bias of one vector field over another.

For example, figure 6.10 is constructed byinterweavingthe streamlines of both vector

fields such that one representation is not “on top” or more visually salient than the other

vector field. The algorithm for constructing overlapping streamlines is presented next.
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Figure 6.10: Interweaving streamlines allows for each vector field to be represented equally

6.3.2 Streamline Weave

One of the most important concerns in depicting the interweaving of streamlines is how

to graphically represent the overlapping elements to be distinct from each other. Artists

and illustrators have traditionally used the technique of line continuity to depict one line

passing underneath another. The size, quality, thickness,and discontinuity of lines allows

for an enriched vocabulary in the representation of visual objects [12, 58]. Inspired by [29],

we define a 2D texture “halo” around the streamlines as definedin section 5.1.3, to not only

give it a 3D appearance, but also to visually separate it fromstreamlines from a different

vector field at a point of intersection (figure 6.11). While the vector fields represented

are defined on the same 2D plane, discontinuities in the linesare utilized to allow for the

perception that one line is underneath the other when two lines cross.

The effect of streamlines weaving over and under other streamlines from a different vector

field is achieved by altering the opacity values of the polygons that constitute the streamline.

This method allows for the computational complexity of the algorithm to be minimized

as the geometry for intersecting polygons does not have to beexplicitly calculated. The
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Figure 6.11: Left: Color continuity depicts that one line isunderneath the other when two
lines cross. Right: A 2D texture “halo” adds a 3D appearance and an additional visual cue
of line discontinuity to depict one line crossing over another line.

intersections are handled through changing the opacity of the streamline as it intersects

with the streamlines already placed. Thus, by altering the opacity values for a streamline

being drawn, it can effectively pass over and under streamlines that have already been

computed and displayed.

The additional data structure of an alpha buffer must be maintained in order to determine

which pixels have been covered by the streamlines of the firstvector field; the opacity

values are also available using theglReadPixelscommand supplied by OpenGL. All pixel

values covered by polygons representing the streamlines are assigned a value of 1.0, and

all other pixels are assigned an opacity value of 0.0.

The first step in the process of displaying inter-weaving streamlines is to determine where

the polygons that constitute the streamlines will be placed. Assuming the seed points for

the streamline placement have already been determined by anequally-spaced streamline

algorithm, the geometry for the thick streamline can been calculated – as presented in

section 5.1. Thus, the only criterion that remains to be determined is how and when

the opacity of the streamline should be displayed as opaque (as it passes over an existing

streamline) or should be displayed as transparent (as it appears to pass underneath).

The algorithm works by weaving one vector field amongst the streamlines defined by the

accompanying vector field. Initially, the streamlines fromthe first vector field can be

placed without the need to consider the second field. The morecomputationally-intensive

process of computing the second vector field’s streamlines will essentially be woven into
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the structure of the first vector field’s streamlines.

The second vector field is introduced one streamline at a time. Each streamline is rendered

starting at the furthest most point of negative integrationalong the streamline and continues

forward until it reaches the complete streamline length. Atthe beginning of the streamline,

a random variable determines whether it will begin by passing over or under the first

streamline of the opposing vector field it encounters. If it is determined to pass over the first

streamline, the OpenGL blending function is set to replace the pixels already stored in the

frame buffer to the pixels being computed by the polygons of the second vector field – thus,

writing over the first vector field and passing over the streamline. This blending function

is maintained until the streamline being drawn has completely crossed the streamline from

the first vector field. This condition is met when the value of the alpha buffer for all four

corners of the calculated polygon have opacity values of 0.0. The blending function is

then changed to allow for the streamline to pass under the next intersection (figure 6.12).

The polygons representing the streamline are drawn until the next intersection occurs. At

this point, the opacity values of the first vector fields’ streamline will hold, and areas of

the polygon that are not opaque will be shown – as if the streamline is passing under the

previously defined streamline. When the alpha buffer valuesfor the four corners of the

polygon are once again 0.0, the blending function values areflipped to allow the streamline

to pass over the next intersection. This process continues for all streamlines and polygons,

Figure 6.12: Illustration of how the weaving streamline is constructed. Initially, the
blending function is set so the streamline will pass over other streamline (left). When
four corners of a polygon are clear from the underlying streamline, the blending function
is changed to allow the streamline to pass under the next streamline it encounters (right).
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alternating between the blending function parameters to allow for the streamlines to appear

to be passing over and underneath each other.

Eliminating Artifacts

Figure 6.13 illustrates a problem than can occur by interweaving two equally-spaced

streamline representations. In a single vector field, the algorithm that determines the

placement of the streamlines is designed to avoid situations in which streamlines become

“too close.” However, when the placement of these algorithms are combined, it is possible

that streamlines will overlap in areas where both vector fields are parallel. The streamlines

becoming coincident results in an clustering artifact thatthe equally-spaced algorithm had

avoided when dealing with only a single vector field. Next we look at two solutions, based

on previously defined equally-spaced streamline algorithms, that consider both vector fields

when determining the location for every streamline.

Figure 6.13: A region of figure 6.10. The equally spaced streamline algorithms do not
account for the other vector field resulting in the potentialfor streamlines to overlap in
regions where the vector fields are parallel.

Image-Guided Streamline Placement

Turk and Banks [75] developed an algorithm that uses an energy function to guide

the placement of streamlines at a specified density for a single vector field. While

computationally expensive, the technique provides a method in which the placement and
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length of each streamline can be refined in order to create a collection of streamlines that

are equally spaced. The algorithm employs a low-pass filter of the streamline image to

measure the separation and quality of the placement of the streamlines. Quantifying the

“quality” of the placement of streamlines by using the low-pass filtered image allows for

a measure of the difference between the current image and thedesired visual density. The

quality can be increased by changing the positions and/or lengths of streamlines, joining

streamlines that are nearly touching, or creating new streamlines to fill sufficiently large

gaps. After an initial set of streamlines are placed at random or on a regular grid, the

process iterates by making changes in streamlines, checking to see if the changes would

increase the quality of the image, and finally adopting the changes if the alteration would

improve the quality of the image. The original algorithm effectively creates an image of

equally-spaced streamlines for a single vector field.

In order to incorporate two vector fields, several alterations to the original code must be

made. First, when streamlines are first introduced to the domain (Turk and Banks use the

term “birthed”), each streamline is assigned one of the two vector fields in an alternating

manner. Thus, when each streamline is being drawn, it will bedefined according to the

vector field that it was assigned when it was first created. Care must also be taken in the

process that joins streamlines that are nearly connected. In this case, it is necessary to

check to make sure both streamlines are defined from the same vector field prior to joining

as it is possible that two abutting streamlines may not be from the same vector field.

Utilizing the low-pass filtered image to minimize the energyfunction with two vector fields

yields interesting results. The quality metric using the low-pass filter ensures that the

streamlines are equally-spaced and a similar density is maintained throughout the image.

By introducing a second vector field, it is inevitable that streamlines from different vector

fields will cross. However, crossing streamlines causes a high penalty in the metric defined

by the low-pass filtered image as regions of intersection will not have a similar density as
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regions of non-intersection. The areas of intersection result in an area of higher density

in the low-pass filtered image, which is above the target density. Figure 6.14 illustrates

the effect of the low-pass filter in regions of intersecting lines. Thus, applying the original

image quality metric of the Turk and Banks technique will yield patches of streamlines of

one vector field instead of overlapping streamlines (figure 6.15).

As this adaptation of original technique does not give a representation in which the fields

appearintegrated, we further modify the algorithm to allow the coverage of each individual

vector field to contribute to the energy function. This is done by redefining the quality

metric to include a low-pass filter image of each of the individual vector field streamlines

in addition to the global set of streamlines.

Figure 6.14: Example of a low-pass filter on two different line patterns. Top: Two images
of lines. Bottom: a low-pass filter of the above line images. The tendency for the original
image-guided streamline placement algorithm to avoid intersecting lines as explained by
the even distribution of the low-pass filter on the non-intersecting lines (right) compared to
the intersecting lines (left).
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Figure 6.15: Two vector fields using the original metric of a single low-pass filter.
The metric induces a high penalty for intersecting streamlines resulting in areas where
streamlines from only one vector field are present.

As streamlines are being added to the image, each streamlineis assigned one of the two

vector fields in an alternating manner. Each streamline is additionally added to two of three

low-pass filter images: one that contains all of the streamlines, one that contains streamlines

only from the first vector field, and one that contains streamlines from only the second

vector field. The density of the low-pass filter of these threeimages is added, in equal

parts, to define the final quality metric. This ensures that areas in which no streamline for

a vector field exist are minimized as this would result in a high penalty from the low-pass

image that represents the coverage from that particular vector field. In turn, this encourages

streamlines to overlap as desired. The algorithm continuesas defined by Turk and Banks

and each streamline is placed, altered, and adjusted according to the new metric. In the

event that the alteration improves the overall quality (including the overall coverage of

each individual field and the global set of streamlines) the change is applied.
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The addition of the low-pass filter images for the individualvector fields does not

dramatically increase the computation time of the originalalgorithm. The quality variable

for each of the low-pass filter images is stored as a variable,allowing for an efficient look-

up. The most computationally expensive portion of the algorithm exists in the process

of determining the updated quality for the potential movingof a streamline. The original

algorithm must compute the contributions of each pixel in the streamline to derive the

update quality. Adding this functionality to the additional low-pass filter images proves to

be negligible as the streamline’s location and properties have already been determined in the

original code. Only a few more additions were necessary to complete the implementation.

The results of the improved algorithm are displayed in figure6.16. The addition of the

individual vector field’s low-pass filter to the quality metric allows for the streamlines

to overlap. Additionally, the global coverage component ofthe quality equation ensures

Figure 6.16: The coverage of the individual vector fields areadded to the quality metric
of the Image-Guided Streamline Placement algorithm to allow for each vector field to be
equally distributed producing a globally balanced streamline distribution
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that regions where streamlines from different vector fieldsare parallel do not contain

overlapping, coincident streamlines.

Seed Point Streamline Placement

The equally-spaced streamline approach introduced by Jobard and Lefer [33] provides

a computationally efficient method to place streamlines fora single vector field. The

algorithm works by initially placing a seed point at a randomlocation and computing the

interpolating streamline. As shown in figure 6.17, new seed candidates are selected that are

a user-defined distance from the points on the previously defined streamline. Streamlines

are constructed from these seed points continuing until it reaches a singular point, the

end of the domain, or it comes within a user-supplied distance of another, previously

defined streamline. This process of determining new seed points at a distance from existing

streamlines continues until no other seed points can be found.

We extend the Jobard and Lefer algorithm to incorporate two vector fields and minimize

the coincident intersections that lead to a large amount of negative space in the final image.

The goal is to create a final image in which the two vector fieldsare as mutually exclusive as

possible – allowing for streamlines of both fields to be as equally-spaced from streamlines

Figure 6.17: The Jobard and Lefer algorithm selects seed points at a equal distance away
from a calculated streamline. The original streamline is colored red. Equally-spaced
streamlines are colored grey.
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in the same vector field and in the other vector field being simultaneously visualized.

We consider two different spacing distances: the first isdsep, the user-defined distance in

the original algorithm that is used to define the distance forthe seed points away from a

calculated streamline. Since the streamlines will be constructed from different fields on an

alternating basis, we essentially use a value proportionalto dsep/2 as to allow streamlines

of different vector fields to be “in-between” the equally-spaced streamlines of the same

vector field. The second spacing distance,dtest, is the stopping criteria that the distance in

which a new streamline can be within another streamline fromthe same vector field before

it is stopped because it is “too close.” Note that thedtest criteria is only enforced with

streamlines of the same vector field, as intersections between the vector fields will occur

naturally and should not be suppressed.

The algorithm begins, in the spirit of the original Jobard and Lefer algorithm, by selecting

a random point and constructing a streamline. The algorithmprogresses by alternating the

vector fields in which the streamlines are drawn. The next candidate seed point is selected

to be a user-defined distance,dsep/2, away from the previous streamline drawn. However,

unlike the original algorithm designed for a single vector field, we also consider the other

vector field to be visualized when selecting potential seed points.

In addition to creating two vector fields that are equally spaced, we seek to eliminate

the phenomena of overlapping streamlines when both vector fields are parallel. In order

to accomplish this we scan all points on the previously drawnstreamline to find the

location in which the two vector fields are most closely aligned. Computationally, this

is an inexpensive process as each vector field is considered along the finite number of

pixels that constitute the streamline. The angle between both vector fields is calculated by

evaluating the dot product between the corresponding vectors. Given a vector A from the

first vector field, and the corresponding vector B from the second vector field, the measure

of the angle between them,θ , can be calculated asA ·B = |A||B|cosθ . Furthermore,
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normalizing the vectors results in the dot product providing the value of the cosine of the

angle. Taking the absolute value of this quantity will yielda maximum value of 1.0 when

the vectors are perfectly aligned (0 degrees) or perfectly opposite (180 degrees). Thus, the

algorithm simply finds the maximum value along the streamline of the dot product for the

corresponding normalized vectors.

The point in the streamline where the vector fields are the most closely aligned is

used to calculate the next seed point at a distance ofdsep/2 perpendicular from the

streamline. Following this step guarantees that the streamlines of both vector fields will

not be coincident at this point. A list of appropriate seed point candidates is stored for

each streamline based on the alignment between the vector fields at each point. The

process of computing seed points along streamlines for alternating vector fields where the

corresponding vectors are aligned continues until a valid seed point does not exist. Seed

points may not be valid for a number of reasons: the seed pointis within the distance of

dsep of a streamline from the same vector field, the resulting streamline length is below a

user-defined tolerance, the seed point is at a critical point. In the case that a seed point is

not valid, the algorithm begins again with streamlines already computed to find appropriate

seed points in which the vector fields are aligned using the list of seed point candidates

stored when the streamline was first computed. As with the original Jobard and Lefer

Figure 6.18: Adaptations to the Jobard and Lefer algorithm allow for effective placement
for seed points of two vector fields. Alternating streamlines from different vector fields
allows the streamlines to be “in-between” other equally-spaced lines.
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algorithm, streamlines are drawn in the fashion of selecting seed points in areas where the

vector fields are most aligned until no other seed points can be found (figure 6.18).

6.4 Applications

In this section, we employ the methods previously presentedto several specific applications,

and explain the contributions to the scientific discovery process made using these

techniques. The discussion emphasizes the visualization technique utilized and the

scientific conclusions that can be inferred. The reader is referred to chapter 2

for the background explanation for the individual applications. Effective results of

simultaneously visualizing multiple vector fields are illustrated through three different

scientific applications: the visualization of velocity andvorticity fields in experimentally

acquired turbulent boundary layer flow data, the visualization of velocity and magnetic

fields in computational simulations of astrophysical jets,and the visualization of different

layers within a numerical simulation of a turbulent channelflow.

6.4.1 Experimental Turbulent Flow

We use the methods described to visualize data acquired fromexperimentally generated

dual plane PIV experiments. Our goal is to further understand the relationship between

the vorticity vector field, velocity vector field, and 2D and 3D swirl strength scalar

distributions. The characteristics of vortex cores, including their orientation given by 2D

and 3D swirl, are useful in theories designed to reduce skin-friction drag in turbulent flow.

Standard PIV datasets, however, are limited to 2D calculations without the out-of-plane

gradients. The 2D and 3D swirl distributions are further discussed in conjunction with

velocity and vorticity vector fields in this section.

We first analyze the in-plane velocity vector along with the 2D and 3D swirl fields. The
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Figure 6.19: Visualization of multiple scalar and vector fields from a dual plane PIV
experiment. The underlying LIC texture represents the velocity vector field. The field
of glyphs represent the vorticity vector field.

velocity vector field is visualized using a LIC texture and the 2D and 3D swirl variables

are encoded in color using a technique that maps each color toalternating streamlines to

avoid the ambiguity that occurs when colors are mixed [76]. The LIC texture serves as a

method to convey the underlying vector field while simultaneously providing the means to

distribute the color representing additional scalar fields.

The velocity vector field is obtained by subtracting the meanstreamwise velocity from the

in-plane velocity component. Thus, the locations of critical points are subject to the relative

velocity of the observer and are not germane to the analysis in this example. Swirling

streamlines in the vicinity of the area of high swirl strength will only occur in the vicinity

of the particular vortex cores that convect at a rate similarto the mean streamwise velocity.

Analyzing the relationship between the 3D swirl and 2D swirlcomponents leads to a

valuable understanding the of the orientation of a vortex core. As 3D swirl is calculated

using all gradient components, it can accurately measure the existence of a vortex core at
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any orientation to the referencing plane. The 2D swirl distribution only measures the swirl

of a vortex core that is oriented orthogonal to the plane. Accordingly, 2D swirl is present

only where there is also significant 3D swirl.

To develop an understanding of how the vorticity vector fieldcontributes to the

phenomenon of swirl strength and the potential for a vortex core, wescreen overlaythe

velocity vector field LIC image with a glyph image representing the vorticity vector field

(figure 6.19). The thickness of the glyphs is defined to be directly proportional to the in-

plane vorticity magnitude. The two vector fields displayed together reveal zones where

velocity and vorticity are nearly perpendicular (regions within a square) and nearly parallel

(regions within an oval) for the particular convection velocity being visualized. The region

in the center of the image exhibiting strong 2D swirl (red) also contains strong in-plane

vorticity, as evidenced by thick glyphs, and additional 3D swirl (blue), suggesting a vortex

core that is inclined at a significant angle to the measurement plane. The remaining zones

of 3D swirl that lack a prominent indication of 2D swirl represent cores whose vorticity

is more closely aligned with the measurement plane. The glyphs give the predominant

vorticity direction of the core.

The integrated visualization of these components allows for vorticity direction and

magnitude to be correlated with the direction of a vortex core delineated by swirl strength.

Effectively combining techniques for the visualization ofmultiple vector and scalar fields

allows for a better understanding of vortex frequency, strength, and orientation as well as

the 3D interactions among and caused by vortices. This technique can be particularly useful

in the analysis of large fields characterized by the occurrence of multiple interactions [19].

6.4.2 Astrophysical Jets

The modeling of magnetohydrodynamic light supersonic jetsin the context of astrophysical

galaxy clusters is one avenue of active research in the field of computational physics [51].
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In addition to the velocity field, physicists are concerned with the magnetic vector field

advected by these supersonic jets and are interested in analyzing the relationship between

both vector fields. Developing a deeper understanding of therelationship between the

vector fields’ topology, magnetic field strength, and corresponding velocity structures

results in a greater understanding about how kinetic and magnetic energy distributions

evolve in these systems and contributes to the explanation of radio emissions that can be

physically observed.

In addition to understanding the relationship of the topology of both vector fields,

astrophysicists are interested in the interplay between magnetic field strength and the

corresponding velocity structures as magnetic field enhancement naturally results from

shear and compression in the flow. Through simultaneous visualization of the simulated

velocity and magnetic fields, we have been able to identify several regions of magnetic

field enhancement and their antecedent velocity structures.

We first visualize the velocity field using a high-frequency LIC texture. Next, the

streamlines of the magnetic vector field are applied using the embossing technique

introduced in section 6.2.2. The result is shown in figure 6.20.

Careful analysis of figure 6.20 reveals that there are regions of high magnetic field strength

obviously correlated with particular velocity structuressuch as high-speed flows, flow

compression, and shearing between flow structures. The underlying LIC texture depicts

the velocity vector field in which the filter length of the LIC convolution kernel is varied

to reflect the magnitude of the velocity vector. Purple (negative) and orange (positive)

colors are used to represent the magnitude of the rate of change of the magnetic field. The

embossed streamlines represent the magnetic vector field. The circled area in the center of

the image is a region of significant magnetic field amplification where the magnetic field

lines change orientation to be oriented perpendicular to the flow. The regions within the

rectangles highlight an orthogonal correlation between flow structures and magnetic field

105



Figure 6.20: Visualization of multiple scalar and vector fields within a
magnetohydrodynamic supersonic jet. The underlying LIC texture depicts the velocity
vector field. The embossed streamlines represent the magnetic vector field.

lines. The line width of the embossed streamlines is also varied to reflect the magnitude

of the magnetic field. The visualization of the vector and scalar fields in combination

allows for advanced study of the correlation of variables within a magnetohydrodynamic

supersonic jet.

Areas in figure 6.20 in which there exist positive regions of magnetic change indicate

regions of magnetic field amplification. Regions of alignment of the magnetic vector

field and the velocity field are a result of shear enhancement of the magnetic field.

There are, however, additional magnetic enhancements withwhich the velocity field is

not obviously causally connected. Moreover, there are manyinstances in which the

magnetic field is unaligned or even orthogonal to the velocity field. This observation runs

contrary to theoretical expectations, assuming shear is the dominant form of magnetic field

amplification.
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An understanding of the processes of magnetic field amplification and their relationship to

flow velocity is important to astronomers since these magnetic structures are responsible

for the observed radio emission characteristic of these systems. Through simulations and

advanced visualization techniques, we expect to learn moreabout what observations of

radio galaxies can tell us about the physics governing theirevolution.

6.4.3 Direct Numerical Simulation of Turbulent Channel Flow

Figure 6.21: Visualization of two separate layers of the numerically generated wall-
bounded turbulent flow. The red lines indicate some examplesof elongated regions where
the streamwise velocity is highly correlated in both layers.

The modeling of a turbulent channel flow is of interest to researchers in fluid dynamics

because the simulation allows for the analysis of large, energetic features in the flow and the

ability to correlate the flow structures in different layerswithin the 3D model. Developing

a deeper understanding between the different regions within a channel flow results in a

better understanding of the formation of vortical structures and the key-physical features

that cause skin-friction drag. In this application, we consider wall-bounded turbulent flow

data from a direct numerical simulation (DNS) of the full Navier-Stokes and continuity

equations [11].

The discovery of the very long “superstructures” is particularly significant as it indicates

an outer-layer scaled phenomena that may have influence all the way down to wall in
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the inner layer. The DNS data is very useful for investigating this conjecture, and some

results are shown in figure 6.21. Here two planes are shown simultaneously from the DNS

dataset. The embossed glyphs data represents a plane in the log region (z+ = 150) and the

underlying texture data is in the viscous buffer zone (z+ = 15) at the wall-normal location

of maximum turbulent energy production. The luminance values for the texture and the

glyph size show the instantaneous streamwise values for each plane. Dark, long, low-

speed structures are visible in the viscous buffer zone, andcareful examination indicates

that the footprints of these structures do extend to the log region based on the presence

of large glyphs in coincident locations. The very long “superstructures” described above

are approximately outlined in red. These results indicate that near-wall regeneration

mechanisms arenot independentof the slow dynamics associated with structures on the

order of the external dimension of the flow, as has always beenpreviously believed.

6.5 Discussion

Creating an image that accurately displays the nature of tworelated vector fields in a single

image is a challenging problem. It is necessary to be able to differentiate separate vector

components while maintaining the perception of the patternin each field with the ability to

understand how the different fields interact with, relate to, and are unique from one another.

Mining the knowledge base of techniques designed for singlevector field visualizations

and experimenting with ways of combining them yielded important findings and insight to

assist the research of our specific applications.

Through combining images, we have found that using the screen overlay method

works well to composite a high-contrast glyph or line-basedrepresentation with a

dense, texture-based image. Embossing one of the representations also allows for the

elements to perceptually group preferentially and segregate from the elements in the other
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representation. We have also introduced several methods for the combination of two

different fields of streamlines.

The applications presented in this chapter have been drivenby the needs of fundamental

fluids research problems: investigations by aerospace engineers into the physics of

turbulence, and the computational modeling and simulationby astrophysicists of the

behavior of supersonic jets in galactic clusters. The focusof the research has been the

exploration of different visualization methods. The ultimate goal of this project is to create

a user-friendly application that the application scientists can use on a routine basis for the

analysis of coincident multiple vector fields.
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Chapter 7

Conclusions

This dissertation provided a collection of techniques designed to effectively visualize multi-

field flow data. In order to produce an image that successfullyreflects multi-field data it

is necessary not only to be accurate in the representation ofindividual distributions, but

also to portray each specific component in a way that does not interfere with the accurate

perception of the other components. The challenge of visualizing multiple scalar fields in

combination with flow data has inspired many different techniques.

Many of the techniques presented in this dissertation involve using color, texture, or

embossing in novel ways in order to accomplish the task of representing multi-field data.

We have explored alternative methods to traditional approaches in the quest for creating

a visual representation that leads to the accurate perception of complicated data sets. The

overarching motivation for this work has been to provide scientists with tools to better

understand the complicated interactions that occur between coincident variables.
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7.1 Future Work

Future work in scientific visualization is strongly motivated by the desire for researches

for deeper understanding of the key physical mechanisms that govern such problems as

turbulent flow or astronomical structures. Building off of the contributions for visualization

techniques made in this dissertation, there are many avenues for future research.

The problem of representing 3D vector components located ona 2D plane can not be easily

solved with alterations of a 2D texture. The geometry of the vector field can be represented

directly with geometric icons, such as glyphs or ellipsoids, as has traditionally been done

with tensor visualizations [38, 43]. Once the geometry is defined, a texture depicting

flow may be introduced by “mapping” the flow to the geometry in amanner similar to

the techniques suggested by Laramee et al. [47] or van Wijk [81]. This would allow for

the flexibility for multiple variables to be represented through geometry and the texture

applied. Additional scalar variables may be introduced viasophisticated light reflection

models (such as Bidirectional Reflection Distribution Functions). Using [90] as inspiration,

the effectiveness of using gloss or haze to denote the presence or absence of scalar quantity

could be analyzed. By altering surface characteristics andverifying the human perceptual

system can accurately distinguish such differences, a widerange of variables may be

visualized.

The techniques introduced in this dissertation mainly address the problem of multi-field

flow data within a single time slice within the flow evolution.This is referred to as static

flow. Unsteady flow, the problem of including the dimension oftime, is an active area

of research [47, 80, 81]. Developing visualization techniques that accurately reflect the

multi-field components of unsteady flow is an exciting and challenging direction for future

research.

The problem of dense, 2D flow visualization is close to being solved [46, 80]. However,
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the problem of scaling the 2D solutions to 3D data is extremely challenging. The difficulty

lies in creating images such that the human perceptual system can interpret three data

dimensions containing multiple variables. The need for effective tools to interpret 3D data

is significant as many scientists are investigating structures that cannot be fully appreciated

with 2D slices. Consequently, 3D flow visualization is area of active research.

Current techniques in texture synthesis allow for the “steering” of the applied texture

according to a vector field [21, 68, 69]. If a suite of texturescould be constructed that would

represent the different possibilities of vector directions within the texture, the two vector

fields could contribute to the selection of the appropriate texture to apply and synthesize

into a final image.

An area left largely unaddressed in this dissertation is theissue of interactivity. A

fundamental understanding can be more easily obtained by interacting with an object,

rather than simply observing it. The scientific visualization process could be enhanced

by developing applications that are interactive via a virtual reality environment instead of

simply creating images that are aesthetic and static [34, 35].

The interaction between visualization researchers and domain scientists in the process of

developing the work presented has proven extremely beneficial to both parties. Through

our collaboration we have advanced our ability to create effective visualizations and made

important discoveries that further the development of important theories related to the

applications. The application scientists played a critical role in defining the specific needs

that the visualization techniques presented here were developed to address. In addition,

they provided an objective assessment of the functionalityof the methods, in terms of how

well they meet their goals of gaining greater insight into their data.
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