Discrete Logarithms and Elliptic Curves in
Cryptography

Derek Olson and Timothy Urness
Department of Mathematics and Computer Science
Drake University
Des Moines, IA 50311
derek.olson@drake.edu and timothy.urness @drake.edu

Abstract

Since ancient times, there has been a tug-of-war taking place between code makers and
code breakers. Only within the last fifty years have the code makers emerged victori-
ous (for now that is) with the advent of public key cryptography. This paper surveys the
mathematical foundations, shortcomings, and novel variants of the “first” public key cryp-
tosystem envisioned by Whitfield Diffie, Martin Hellman, and Ralph Merkle in 1976. The
system they developed, Diffie-Hellman key exchange, relied on the difficulty of taking dis-
crete logarithms in the finite fields Z,, where p is prime. While relatively secure, methods
known as the index calculus exist to crack Diffie-Hellman key exchange in less than expo-
nential running time. This has led to the use of elliptic curves in analogous cryptosystems.
The basic theory underlying these elliptic curve cryptosystems is presented as well as a
comparison of these systems with standard RSA encryption.

1 Introduction

Since antiquity, humans have been using codes to communicate secretly with one another.
Whether sending battle plans to distant armies in ancient Rome or paying a utility bill over
the Internet, the ability to communicate securely, quickly, and easily has consumed gener-
ations of human thought. The term cryptography, which is derived from the Greek word
kryptos, meaning hidden, is used to describe the creation of these secure communication
channels.

Along with this ability to communicate securely, the desire to break or crack this security
has naturally become a valuable commodity leading to a battle between the code makers
and code breakers, which has been raging for millenia and is well chronicled in [1]. Up
until the mid 1970s, the code makers and code breakers were locked in a virtual stalemate.
The code makers developed numerous means of communicating securely—ranging from
Roman Caesar ciphers that shifted each letter in the alphabet a certain number of letters
to the German enigma machine of World War II—only to have them broken by the code
breakers. The common element of both of these systems and, in fact, every cryptosystem
up to the 1970s, was the dependence upon a private key. This meant that before establish-
ing secure communications, the two parties had to have first agreed to a shared key—some
piece of information such as a codeword or number—that had to be kept secret at all costs.
If the Germanic Roman legion were communicating with the Sabine Legion, each would
have to know how many places to shift the letters in the message to encode and decode the
message successfully. The private key in this case is the shift amount resulting in only 25
possible keys and a trivial cryptosystem to crack. Fast forwarding to the start of the 20th
century, the German enigma machine allowed for approximately 10,000,000,000,000,000
possible keys in its original form to about 159,000,000,000,000,000,000 possibilities in its
late World War II form yielding a much more secure cryptosytem [1]. The problem that
arose was that this private key had to be distributed to every party involved in the com-
munications, and seemingly the only way to distribute the key securely was by physically
exchanging keys through couriers or face to face meetings, which was was cost prohibitive
for governments and the richest private industries let alone the ordinary person.!

This problem became known as the key distribution problem, and many thought it was not
solvable. Then in 1974 a partnership began that has, for the present, shifted the balance
of the struggle firmly in the grasps of the code makers [1]. That partnership was between
Whitfield Diffie and Martin Hellman and later included Ralph Merkle. The three men en-
visioned a means of encoding and decoding messages that did not involve a private key but
instead relied upon a public key that could be broadcast to adversaries as well as allies. The
system they developed only allowed for the exchange of keys—not textual messages—but
it paved the way for bona fide public key cryptosystems such as RSA and ElGamal encryp-
tion [1].

'Though the idea of physically exchanging keys sounds absurd to us now, it was not even 50 years ago
when banks sent their most trusted employees around the globe with private keys for the next week of banking
activity held in a “padlocked briefcase” [1].

Known as Diffie-Hellman-Merkle key exchange or just Diffie-Hellman key exchange, their
system still provides a very secure means of exchanging keys between two parties and
relies on the difficulty of a mathematical problem known as the discrete logarithm problem.
This paper explores just how difficult this problem is by detailing a well-known algorithm
called the index caclulus to crack Diffie-Hellman key exchange in subexponential time [2].
It then details alternative cryptosystems based on the use of elliptic curves for which no
subexponential algorithms have yet been discovered. As we shall see, these elliptic curve
based cryptosystems offer significant advantages over even RSA encryption, which could
soon lead to elliptic curve cryptography (ECC) becoming the standard in the cryptography
industry.

2 Diffie-Hellman Key Exchange

The original Diffie-Hellman key exchange algorithm was published in 1976 [3]. The math-
ematical justifications of the algorithm require only a basic understanding of abstract al-
gebra, and the process is quite simple. Adding to its appeal are the efficient numerical
algorithms for performing the various steps. However, as mentioned previously, a well
known shortcoming of Diffie-Hellman key exchange is the existence of subexponential
running time algorithms to crack it. Both the process of Diffie-Hellman key exchange and
the algorithms to break it are offered in the next two sections.

2.1 The Algorithm

In order to explain Diffie-Hellman key exchange, we will employ the usual scenario in-
volving Alice, Bob, and Eve. Alice and Bob are trying to share a secret message m, while
Eve, an adversary with less than honorable intentions, is attempting to intercept this mes-
sage. Alice must somehow encrypt the message m in such a way that Bob can decrypt the
message to recover the original message m, but in such a way that Eve cannot discover m.
The algorithm due to Diffie, Hellman, and Merkle that allows for the exchange of keys is
as follows and can be found in most introductory texts on cryptography including [2].

1. Alice and Bob choose a large prime N and an integer p mod N. Both of these can be public
information, meaning Eve knows this value.

2. Alice chooses a secret integer m, and Bob chooses a secret integer n. Neither Alice nor Bob
knows the other’s integer.

3. Alice computes Q),,, = p™ mod N, and Bob computes), = p"™ mod N.
4. Alice sends (),,, to Bob, and Bob sends (),, to Alice.
5. Alice calculates Q = (Q,,)™ mod N while Bob calculates Q' = (Q,,)" mod N.

What turns out to be the case is that () = @)’ so upon completing this algorithm both Alice
and Bob have a shared value (), or a key, that can be used to communicate securely. The
equality of) and)’ over Zy can be seen in

Q=(Qu)"=@")"=p"=p™=")" = (Qn)" =Q mod N, (1)

2

where (p™)™ = p™™ = p™" holds in an arbitrary group for integers m and n. In this case,
the group (actually a field) is Zy. Also of note is that only steps one, three, and five appear
to require significant computation time. However, one can use the binary expansion of the
exponent and the “Fast Powering Algorithm” so that computing b mod N requires at most
2log,(y) multiplications in steps three and five [2]. Step one requires the generation of a
large prime integer which can be a substantial task, but in practice this can be performed by
a trusted third party [2]. Hence Diffie-Hellman key exchange is both simple to understand
and efficient to implement.

It should be noted that although Alice and Bob can use Diffie-Hellman key exchange to
share a key with another, they are not actually sharing some message, m. Once they have
a shared key, they must then use this key in another cryptosystem to exchange informa-
tion. The first such system to use Diffie-Hellman key exchange to send messages was the
ElGamal system put forth in [4].

2.2 Cracking Diffie-Hellman

With Alice and Bob using Diffie-Hellman key exchange to generate a shared key to be
used in a public key based cryptosystem, the question is whether an adversary, Eve, can
also determine the shared key and hence steal their communique. Using the example in
the previous section, Eve can attempt to solve p* =), mod N or p¥ = @),,, mod N for
either = or y and then compute either (Q),,)* = @ or (Q,)? = @'. In other words, Eve
must find the integer = (y) such that raising p to the xth (yth) power yields (),, mod N
(@, mod N). Over the real numbers, this value would be known as the base p logarithm,
and over the finite field Zy, this value is called the base p discrete logarithm. We denote
this as # = log,(Q,). Finding this value is known as the discrete logarithm problem, and
the difficulty of doing so is what underlies Diffie-Hellman key exchange.

For nearly a decade, the discrete logarithm problem was thought to be sufficiently difficult
to require exponential running time algorithms. In actuality, a method to calculate discrete
logarithms and therefore solve Diffie-Hellman key exchange existed prior to the publica-
tion of Diffie-Hellman key exchange. This method is known as the index calculus and was
put forth by Western and Miller in [5]. Their work included discrete logarithms for up to
six digit prime numbers. For ease of understanding, we present the index calculus as it
appears in [2].

The algorithm relies on several key concepts from number theory and on being able to write
discrete logarithms as linear combinations of “smaller” logarithms. When enough of these
linear combinations are found, the unknown, “smaller” logarithms can be solved for as if
they were variables in a linear system.

The first concept from number theory that will be needed is that of a B-smooth number.

Definition 1. A number x is B-smooth if each prime factor of x is less than or equal to B.

For example, 36 = 22 x 32 is 3-smooth, 5-smooth, 7-smooth, and 31-smooth. Meanwhile,
49 = 72 is 7-smooth but not 5-smooth. To start the algorithm, we will choose a value for
B. The exact choice for B will be apparent at the end. The next step is to find a value of
k such that Q,, * p~* mod N is B-smooth. We take as given that this can be done via a
brute force approach starting with £ = 1,2, The argument for why this can be done is
a probabilistic one which is justified using polynomial fields in [6]. With this value of £k,
we will be able to write (),, * p~* as the product of the primes less than or equal to B, y;,
with appropriately chosen exponents,

Qn *p*k = H y;% mod N. 2)

yi<B

One useful property about taking discrete logarithms is that they also possess the properties
familiar from taking logarithms on real numbers: the logarithm of a product is the sum of
the logarithms of the multiplicands, and exponents may be taken outside of the logarithm
as scalar multiples. Taking the base p discrete logarithm of equation (2) and applying these
properties produces

log,(Qn) — k = Z ey, * log, (y;) mod (N — 1). 3)

yi<B

Note that the modulus is now N — 1 because taking discrete logarithms is a mapping on
Zn—1. (The discrete logarithm of 0 is undefined just as the logarithm of O is undefined
over the real numbers.) Also observe that we appear to be no further along than when we
began. We sought a way to compute the base p discrete logarithm of (),, and now need to
compute the base p discrete logarithm of the prime numbers, y;. This is where the insight
of the index calculus comes in. We take a “random selection of exponents,” j, and check
to see if p; = p’ mod N is B-smooth [2]. If it is not, then we disregard this value for j and
try another random value. Upon finding a value for j such that p; = p’ is B-smooth, we
proceed to write p; as the product of primes less than or equal to B,

pj =p; = H yifyi(]) mod N 4)
¥ <B

where f,,(j) is the exponent that appears on y; in the prime factorization of j. Now taking
the base p discrete logarithm of (4) gives us

log,(p;)) == Y _ fu(j)log,(y;) mod (N —1). (5)

yi<B

If enough equations of the form of (5) can be found, then we will obtain a system of linear
equations whose variables we are trying to solve for are of the form log,,(y;)

1= [fu (i) log, y1 + -+ + f,, (j1) log, y] mod (N — 1)
Jo = [fun (G2)log, y1 + -+ + fy, (j2) log, y] mod (N — 1)

jk = [fy1 (]k) logp Y1+ fyk (]k) logp yk] mod (N - 1)‘

4

The standard theory from linear algebra tells us we need as many equations as unknowns
to solve this system. There is an unknown for each prime less than or equal to 53, and the
prime number theorem tells us that this number is approximately 7(B) ~ %. Once we
solve for the unknown discrete logarithms of the primes less than B, these values can be
substituted into equation (3) to discover logp(Qn). The question then becomes how many
random integers, j, must be generated to find enough of these equations. The answer to

this is provided by the following probabilistic result [2].

Theorem 1. If B = ¢V /2N N) s voquires approximately eV NN o dom

numbers to find 7(B) ~ % B-smooth numbers.

Therefore, if we choose B to be approximately eV 1/2InN)(InInN) ot the start of this algo-

rithm, it will take roughly eV 2(nN)(inin N)

problem which leads us to

random integers to solve the discrete logarithm

Theorem 2. The index calculus method solves the Discrete Logarithm Problem in subex-

ponential time: O (ec\/ (log N)(log log N)>, where c is a constant.

Using the index calculus, our adversary Eve is therefore able to solve the discrete loga-
rithm problem and hence crack Diffie-Hellman key exchange in less than exponential time.
Furthermore, methods employing B-smooth numbers can also be used to crack RSA en-
cryption in subexponential time [2]. While no “easy,” polynomial time algorithms exist for
either of these encryption methods, the existence of the subexponential algorithms did spur
the search for alternative, “harder” systems to crack.

3 Elliptic Curve Cryptography

Returning to the scenario of Alice trying to share a secret message with Bob, Diffie-
Hellman key exchange does provide a reasonable amount of protection from eavesdrop-
pers such as Eve. There are no polynomial running time algorithms Eve can use to quickly
discover their information. But suppose that Alice and Bob are sharing vital information
that requires even more security assurances—perhaps they are exchanging bank account
numbers and pin numbers. These are likely to remain the same for some time so it would
be desirable to have an encryption scheme as easy to implement as Diffie-Hellman key ex-
change but have no known subexponential algorithms to solve it. One such method that has
garnered significant interest and may soon surpass RSA encryption as the standard high-
powered encryption technique is the use of elliptic curves in cryptography, first pioneered
by Koblitz and Miller [7]. We first describe what an elliptic curve is and then one way in
which they are used in cryptography called elliptic curve Diffie-Hellman key exchange.

3.1 Elliptic Curves

Though the formal study of elliptic curves is best understood in terms of algebraic topology,
a basic understanding can be gained using elementary group theory [2]. Once this is done,

the idea behind using elliptic curves in cryptography is to use the elliptic curve group in
place of the group, Z,, in Diffie-Hellman key exchange.

Definition 2. Let [F be a field. An elliptic curve over I is a curve defined by an equation of

the form

y? =23+ ax + b,

where the discriminant, —16 (4a® + 27b*) # 0 and a,b € T.

Figure 1: An elliptic curve given by 3> = 2% — 62 + 5 over R.

It is not immediately apparent how to define an operation on points on an elliptic curve that
results in an algebraic group, but when the field in question is the real numbers, we can use
geometry to help define this operation.

To find the sum of two (distinct) points, P and (), we use the following steps

1. Construct the line determined by P and (). For the moment, let us assume that this line is not
vertical. Then the line will intersect the elliptic curve in a a third point, R. 2

2. Reflect the point R across the z-axis, about which elliptic curves are readily seen to be
symmetric. The resulting point is defined as the sum, P + Q).

L L L L
-4 -2 0 2 4

2This is because substituting the equation for a line, ¥ = ma + ¢, for y into the equation for an elliptic
curve will produce a third degree polynomial in x that has two real roots since it passes through P and @) and
hence must have a third real root.

There are two caveats to consider in this process. Should the points P and () not be distinct,
then the tangent line at P = (Q is used in place of the line connecting P and ().> Should
the two points lie on a vertical line, then there will be no way to recover a third point of
intersection. For this reason a point at infinity, denoted O, is added.

P+Q = O /

The point at infinity also serves a dual purpose as the identity in the group we are searching
for: when adding a point, P, to O, we construct the vertical line through P which inter-
sects the elliptic curve in the point that is the reflection of P across the x-axis. To obtain
the final sum P + O, we then follow the second step above and reflect this point across the
x-axis yielding the original point P. Using basic algebra, a simple algorithm to compute
the sum of two points on an elliptic curve can then be defined. We present the algorithm as
it appears in [2], referred to as the elliptic curve addition algorithm. A full derivation can
also be found there.

Let P = (z1,y1) and Q = (22, y2) be two points on an elliptic curve.
Casel: fP=0,then P+Q =Q
Case2: IfQ=0,thenP+Q =P
Case3: Ifxy =x9andy; = —ys,then P+ @Q = O.
Case4: If P # Q,
i SetA= 22—t

ii. Setws =A% -2y —a9andys = Nz —23) — 11

iii. P+ Q= (x3,93)
Case 5: Else, P =(Q

: o 3:1:%+A
i. Set\ = 3

ii. Setws =A% -1 —x9andys = Nz —23) — 11

iii. P+Q=(23,y3)

3In this case, the point P = @ will correspond to a double root of the polynomial obtained when substi-
tuting the equation for the tangent line into the equation for the elliptic curve.

Using geometry in the case of elliptic curves over R, it is not difficult to see that the set
of points on an elliptic curve plus the point at infinity along with addition as described
constitutes an algebraic group. What the equations in the elliptic curve addition algorithm
allow us to do is define an algebraic group, called the elliptic curve group, over arbitrary
fields.

Theorem 3. Let I be a field. Let E : y*> = 2® + ax + b be an elliptic curve over F so
a,b € F. Then the set of points (z,y) € F x F that satisfy the elliptic curve equation along
with the point O form a group under the elliptic curve addition algorithm.

For example, if we take Zs to be our field with 4> = 23 + 3z + 2 as our elliptic curve,
then a brute force algorithm can determine which of the 25 possible points in Zj; X Zs
is on the elliptic curve. Doing so, we find this elliptic curve consists of the five points
(1,1),(2,1),(1,4),(2,4), and O. In the next section, we see that the number of points on
an elliptic curve and finding those points is intimately related to the difficulty underlying
the elliptic curve version of Diffie-Hellman key exchange.

3.2 Elliptic Curve Diffie-Hellman Key Exchange

With the working knowledge of Diffie-Hellman key exchange that we already have, it is
very simple to extend this process to involve the elliptic curve group in what is known as
elliptic curve Diffie-Hellman key exchange. In the original Diffie-Hellman key exchange,
a large prime /V and an integer p mod N were chosen to be shared between Alice and Bob.
Both then chose secret, individual integers m and n. The very simple idea behind elliptic
curve Diffie-Hellman key exchange is to replace Zy by the elliptic curve group over Zy
and have Alice and Bob choose a shared elliptic curve, F/, and a starting point, P, on that
curve. The process then proceeds exactly as before with the exception of a different group
operation—that of adding points on an elliptic curve via the addition algorithm.

1. Alice and Bob agree to use an elliptic curve, E, over a field Z with N prime and a starting
point, P, on that curve.

2. Alice chooses an integer m and Bob an integer n.

3. Alice computes @), = P+ P +---+ P, and Bob computes Q,, = P+ P+ --- + P.

m times n times

4. Alice sends (),,, to Bob, and Bob sends (),, to Alice.

5. Alice calculates Q,,, = @y + @y + - - - + @Q,, while Bob calculates

m times

an:Qm+Qm+"'+Qm-

n times

Equation (1) holds for any group so it can be directly applied to the above to prove that Alice
and Bob have a shared key @),,,,, = (,,- This can then be used in a public key cryptosys-
tem, but the question remains as to how secure this cryptosystem actually is. Presently, the
answer to that question is that elliptic curve Diffie-Hellman key exchange is actually more

8

secure than either Diffie-Hellman key exchange or RSA encryption, as there are currently
no known algorithms capable of solving elliptic curve Diffie-Hellman key exchange in any-
thing less than exponential time for well chosen elliptic curves. The reason that methods
like the index calculus cannot be used on elliptic curves is that points on an elliptic curve
cannot be broken up into sums of “smaller” points as discrete logarithms were broken up
into sums of smaller logarithms.

The elliptic curve must, however, be chosen judiciously, for there are algorithms that can
crack elliptic curve Diffie-Hellman key exchange in less than exponential time when the
number of points in the elliptic curve group over Z, is equal to p,p — 1, p+ 1, or is a prod-
uct of small primes [7]. Because of this, the number of points on the elliptic curve must
be checked prior to using it. As we did in the case of y*> = 23 + 32? + 2 over Zs, this can
be done by a brute force algorithm, but that would be impractical over fields of large prime
order. In practice, a polynomial time algorithm due to Schoof, Elkies, and Atkin is used to
compute the number of points in the elliptic curve group [7].

It is in fact this number of points for which the difficulty of cracking elliptic curve Diffie-
Hellman key exchange depends. In order for Eve to breach its security, she must solve the
discrete logarithm problem over an elliptic curve group. Without methods such as the index
calculus, the best algorithms that Even can use have exponential running time dependent
upon the number of points in the elliptic curve group—which itself depends on the size of
the prime number V.

4 ECC vs. RSA

Elliptic curve Diffie-Hellman key exchange is but one example in an ever-growing field
known as elliptic curve crytptography (ECC) that applies elliptic curves in various ways to
cryptography. We have already seen an example of ECC that requires more time to solve
than either RSA encryption or Diffie-Hellman key exchange. But there are other desirable
properties that a cryptosystem must have for it to be practical. These include algorithm
set-up costs, storage requirements, speed and efficiency, and standardization. We conclude
this paper by offering an overview of the advantages and disadvantages of general elliptic
curve cryptography versus RSA encryption.* This comparison will indicate that elliptic
curve based cryptosystems could soon become the standard tool used in encryption appli-
cations.

In a paper published on the RSA website in 1998 [8], Robshaw and Yin analyzed the
setup costs, security, implementation, and performance of elliptic curve cryptography ver-
sus RSA encryption. The setup costs for ECC are more intensive because it involves first
obtaining an underlying field, then judiciously choosing an elliptic curve and starting point.
Meanwhile, initiating RSA consists only of generating a large prime integer. We have al-
ready noted that elliptic curve Diffie-Hellman key exchange is more secure than RSA en-

4An overview of RSA can be found in [2].

cryption since there exist no subexponential algorithms to crack the elliptic curve version.
This gives ECC a significant advantage in storage requirements as secure public keys need
only be 160 bits to offer the same security as 1024 bit RSA keys [8]. Elliptic curve addition
can also be performed quite efficiently using the “Double-and-Add” algorithm [2] making
it similar in efficiency to RSA, which uses the aforementioned “Fast-Powering” algorithm.
Although the exponentiation required in RSA encryption can be performed faster, a similar
paper to the Robshaw and Yin paper on the NSA website [9] claims that ECC is actually
more efficient to implement than RSA when factoring in the gains in security.

One distinct disadvantage of elliptic curve cryptography is the proprietary nature of it. Cer-
ticom, a Canadian based research company, currently possess well over 100 patents on
elliptic curve cryptography making usage and wide-spread implementation difficult [9].
Furthermore, there has been a lack of standardization with ECC, whereas RSA was stan-
dardized very early on [8]. Despite this, elliptic curve cryptography has shown enough
promise for the following to appear on the NSA website, “For protecting both classified
and unclassified National Security information, the National Security Agency has decided
to move to elliptic curve based public key cryptography” [9].

5 Conclusion

This paper has surveyed the history of public key cryptography from the first key exchange
system developed by Diffie, Hellman, and Merkle to the more recent methods dependent
upon elliptic curves. Though we have isolated the lack of a subexponential running time
algorithm to break elliptic curve Diffie-Hellman key exchange as a major attraction to this
form of encryption, it must be remembered that there is no proof that one does not exist.
With the inherent secrecy involved in developing cryptographic applications, it could be
that one already exists. For now, ECC provides what appears to be the next evolution in
the code maker’s toolbox, possessing many of the requirements needed in an encryption
algorithm. But until an absolutely secure cryptosystem can be developed, the proverbial
tug-of-war between the code makers and code breakers will no doubt continue.

References

[1] S. Singh, The Code Book: The Evolution of Secrecy. New York, NY: Doubleday,
1999.

[2] J. Hoffstein, J. Pipher, and J.H. Silverman, An Introduction to Mathematical Cryptog-
raphy. New York, NY: Springer, 2008.

[3] W. Diffie and M.E. Hellman, “New Directions in Cryptography,” IEEE Trans. Infor-
mation Theory, vol. IT-22, no. 6, 644-654, 1976.

[4] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms,” IEEE Trans. Information Theory, vol. 31, no. 4, 469-472, 1985.

10

[5] A.E. Western and J.C.P Miller, Tables of Indices and Primitive Roots. Cambridge:
Cambridge University Press, 1968.

[6] M. E. Hellman and J. M. Reyneri, “Fast computation of discrete logarithms in GF(q),”
in Advances in Cryptology: Proceedings of CRYPTO 82, D. Chaum, R. Rivest, and
A. Sherman, Eds. New York, NY: Plenum Press, 1983, pp. 3-13.

[7] M. Stein, Elementary Number Theory: Primes, Congruences, and Secrets: A Compu-
tational Approach. New York, NY: Springer, 2008.

[8] M.J.B. Robshaw and Y.L. Yin, “Overview of Elliptic Curve
Cryptosystems,” RSA Laboratories, 1997. [Online]. Available:
http://www.rsa.com/rsalabs/node.asp?id=2013 [Accessed: Dec. 10, 2009].

[9] National Security Agency, “The Case for Elliptic Curve Cryptogra-
phy,” National Security Agency, Jan. 15, 2009. [Online]. Available:
http://www.nsa.gov/business/programs/elliptic_curve.shtml [Accessed: Dec. 10,
2009].

11

