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Abstract

Many different studies of ferromagnetism and anti-ferromagnetism models have pre-
sented theories on energy minimization. These studies, however, do not give visual
confirmation of what is occurring during minimization. We wish to study how the
energy minimizes locally in a ferromagnetic system. Where does the energy dissipate
once the magnetic field is applied? Are there regions that exhibit a chaotic nature
before eventually aligning with an external magnetic field? It has been demonstrated
that the energy of the system will minimize in the presence of an external magnetic
field. However, regions within the lattice may not converge at the same rate. Our goal
is to develop and apply a visual tool to the system, which would allow users to visu-
alize the minimization process. In this paper, we describe a model and visualization
system designed to illustrate the principles of energy minimization in ferromagnetic
systems.



1 Introduction

While magnets and magnetic fields are ubiquitous and largely understood, the sub-
tle properties of atomic magnetic dipoles include complicated interactions between
individual atoms and electrons [2, 5, 9, 10, 11, 12]. A better understanding of these
magnetic, molecular interactions could be applied to various applications such as cre-
ating faster, more efficient random access memory (RAM) in modern computers.

We constructed software that models and visualizes magnetic dipoles in a lattice and
studied how the dipoles interacted with one another. Our software models the energy
minimization that naturally occurs in ferromagnetic materials using a basic model
for the Hamiltonian. Then, our software uses OpenGL to produce real-time three-
dimensional renderings of the interactions between magnetic dipoles.

Additionally, the software models the interaction of the dipoles with an external
magnetic field. This serves to demonstrate real life scenarios and to provide a litmus
test as to whether or not the energy minimization is being modeled appropriately
and accurately. Finally, our software models thermodynamic effects. By modeling
the thermodynamic energy (heat) of the system, our software can show things like
the threshold at which a material loses its ferromagnetic properties.

2 Background

2.1 Physics

The Heisenberg model is a simple n-vector model that allows us to represent magnetic
dipoles in a lattice and gives the Hamiltonian of an individual dipole. The Hamil-
tonian directly corresponds to the total energy of the system. A minimization of the
total Hamiltonian indicates that the system has been allowed to align internally in
the absence of an external magnetic field or has aligned with the external magnetic
field. The Heisenberg model uses the Nearest Neighbor Principle in the calculation
of the Hamiltonian. The Nearest Neighbor Principle states that only the surround-
ing dipoles’ orientation will be considered to be most significant in calculation of the
Hamiltonian. The surrounding dipoles in our system will be located above, below,
left, right, in front and behind. The Heisenberg model defines the Hamiltonian of the
jth dipole to be:

Hj = −
∑

i

~mi · ~aj − ~B · ~aj (1)

The ~aj is the vector that represents the jth dipole in the lattice. The
∑

i ~mi · ~aj is the
nearest neighbor sum where ~mi is the vector that represents the neighboring dipole.
~B is the magnetic field of the system. An assumption of the Heisenberg model is that
the magnitude of the dipole moment is one.



Additionally, we wish to model the effect of temperature on the Hamiltonian in the
system. The energy of the jth dipole due to temperature is given by:

Ej =
F

2
kbT (2)

T is the temperature of the entire system and kb is the Boltzman constant. F rep-
resents the degrees of freedom. For our system, there are three rotational degrees of
freedom. We will assume that this energy is due to the rotational kinetic energy of
the jth dipole given by:

KEj =
1

2
Iω2 (3)

The I is the moment of inertia and ω is the angular velocity defined by:

ω =
∆θ

∆t
(4)

If we substitute ω from Eq.(4) into Eq.(3) and set the kinetic energy equal to the
thermal energy from Eq.(2) and solve for T we get formula for the temperature as a
function of ∆θ:

T =
1

3

( I

kb∆t
2

)
∆θ2 (5)

Using this relationship between the temperature and ∆θ, we can model the tempera-
ture of the system by altering the amount of random rotation (∆θ). Another physical
quantity that we will use is the magnetization. This is a measure of how the system
has aligned with an external magnetic field. The magnetization is given by:

~M =
1

N

∑
j

~aj (6)

Typically we will take projections of the magnetization in the direction of the external
magnetic field. This scalar quantity represents how much the dipoles have aligned
with the external magnetic field.

Physically, we expect that applying these formulas will exhibit the following behaviors
to system: If the temperature is zero (T = 0), the system will minimize its energy
and all vectors will align. If the temperature is not zero (T 6= 0), then we expect
that the energy will stabilize but may not become completely minimal. Lastly, if the
temperature rises above the Curie temperature, the system will be unable to minimize
and the dipole moments will not align. However, in the presence of a magnetic field,
the system will exhibit paramagnetism, a form of magnetism that only exists in the
presence of an external magnetic field. The algorithm we developed to model the
system is presented in section 3.

2.2 Visualization

Many scientific visualization techniques have been developed for representing and
understanding three-dimensional scalar and vector fields. Perhaps the most straight-
forward technique for visualizing a vector field is to use a series of lines or glyphs that



are tangent to the vector field. This technique is known as vector plots or hedgehogs
[7].

In addition to the vector field, we also wish to visually represent the Hamiltonian
that exists throughout the three-dimensional domain. Volume rendering is a classic
visualization technique that uses color and opacity to represent a 3D scalar field. The
process begins by assigning a scalar value to each point in the domain. A transfer
function is defined to map each scalar value to a distinct color and level of trans-
parency [8]. The image is rendered by taking a number of 2D slices through the 3D
volume that is to be rendered. The slices are colored—or texture mapped—according
to the transfer function at each point in the domain. The final image is constructed
by compositing the transparency values within the slices to form a final 2D image
that accurately depicts the 3D volume.

Field et al. have developed a technique that combines volume rendering with other
vector field representations to visualize multiple quantities in the same three dimen-
sional domain [3]. Our work is inspired by these techniques and we seek to expand
these methods to better understand the minimization of the Hamiltonian.

3 Minimizing the Hamiltonian

We first randomly initialized the orientation of each dipole in a lattice consisting of
203 dipole vectors. Our initial implementation of a Monte Carlo method to minimize
the Hamiltonian proved to be computationally expensive. Instead, we employed an
iterative approach described in the next section.

3.1 An Iterative Algorithm for Minimizing the Hamiltonian

After the dipoles were randomly initialized, an iterative approach is applied to find
the orientation of the system that yields the minimum Hamiltonian. The technique
we developed for updating the lattice involves a simple manipulation of Eq.(1). The
Hamiltonian calculation involves a summation of its nearest neighbors added to the
magnetic field. We take this to be one vector ~Kj defined for the jth dipole to be

~Kj = (
∑

i

~mi + ~B) (7)

To update the lattice we add η( ~Kj−~aj) to ~aj for each dipole, η is a small user-defined
constant that is on the order of 10−2. This constant relates to the type of material,
the value of the time step, and the rotational inertia. It is defined by the user to
attain the desired behavior of the system.

In figure 1, we show the results of our iteration method on the alignment of the dipoles
for various magnetic field strengths. We apply the magnetic field in the direction of
the x-axis. The alignment of the dipoles is represented by the magnetization projected



Figure 1: The magnetization approaches 1.0 for a system with no temperature and a
magnetic field. If the magnetic field is stronger the graph approaches it more quickly.
This figure demonstrates exactly how we expect the energy to minimize.

in the direction of the external magnetic field. Perfect alignment with the magnetic
field would yield a magnetization of 1.0. As expected applying a stronger magnetic
field causes the dipoles to align more rapidly than a weaker magnetic field.

3.2 Incorporation of Temperature

In order to incorporate temperature into our system, we evaluated Eq.(5) and as-

signed 1
3

(
I

kb∆t2

)
= 1. This makes the relationship between temperature and the

average change in the angle very manageable. However, we lose the physical inter-
pretation of the temperature until further unit analysis is performed. The next step
is to allow our system to have random rotations of the dipoles because we want our
system to have a freedom in movement that non-zero temperature implies. We use
the Central Limit Theorem (which was first explored by De Moivre[1]) to achieve a
Gaussian-like distribution in which we could control the average angle and the vari-
ance independently. Figure 2 shows some plots of energy minimization at different
temperatures. This figure demonstrates how temperature affects the minimization
for a given magnetic field.

4 Visualization

In the next section, we describe visualization methods developed to better under-
stand the orientation and alignment of the dipole vectors and the three dimensional
convergence patterns of the Hamiltonian minimization.



(a) (b)

(c) (d)

Figure 2: (a)-(c):These plots show the magnetization for three temperatures. These
temperatures were experimentally determined to be interesting, because they showed
how much temperature could affect the system. (d): This plot shows magnetization
for a constant magnetic field with three different temperatures.

4.1 Dipoles

An initial visualization method for representing the dipole is to simply construct a
line segment or glyph in the direction of each vector. This technique, known as vector
plots or hedgehogs, is traditionally an effective method for representing vector fields.
However, we are predominantly interested in the alignment of the dipoles and this
simple technique is not entirely sufficient. Figure 3(a) illustrates how the orientation
of the three dimensional vector glyphs within a lattice becomes difficult to interpret
without additional information, as the orientation of the 3D glyphs become occluded
by other glyphs.

In order to make the orientation of the vectors visually salient, we color the dipoles
according to their orientation. We assign each of the coordinate axis a separate
and orthogonal color in RGB color space (X⇒red, Y⇒blue, Z⇒green). Since each
components range is -1 to 1, we developed a mapping function as follows:

f(w) =
w + 1

2
(8)

where w is the X, Y, or Z component and f(w) corresponds to R, G, and B, re-



(a) (b)

Figure 3: A visualization of the dipoles that have been allowed to partially align. (a):
Shows no coloring (b): Shows a coloring of the dipole that indicates the direction of
the dipole

(a) (b)

Figure 4: (a):This figure shows the lattice minimizing. We see there are definite
regions of minimization. The volume-rendered regions of green indicate that the
Hamiltonian has not completely minimized. (b): This figure is simmilar to (a) except
that it has an applied external magnetic field. Here we can see that the Hamiltonian is
minimizing in the dirrection of the magnetic field and volume render indicates regions
where the system is struggling to minimize.



spectively. The result is that the vectors that are aligned are colored a similar color
(Figure 3.b).

4.2 Volume Rendering the Hamiltonian

Volume rendering is a classic visualization technique that uses color and opacity to
represent a 3D scalar field. We use volume rendering in order to represent the Hamil-
tonian of the system. This allows the user to directly identify regions where the
Hamiltonian is minimizing and how the minimization occurs. Figure 4 shows two dif-
ferent volume renderings. It is clear that there exist regions where the Hamiltonian
is not minimizing as quickly as other regions. It is also clear from these visualizations
that the lattice does not uniformly minimize and that there are identifiable regions
where initial dipole alignment greatly affects the convergence rate of the minimization
of the Hamiltonian.

Figure 5 shows a plot of the magnetization similar to the plots in figure 2. Addition-
ally, it shows the volume renderings that correspond to several time points throughout
the minimization. Figure 5(a) show how the system is completely unaligned at the
initial time step. It is clear from the volume rendering that there exists absolutely no
minimization in the Hamiltonian. Examining figures 5(b) and (c), it is clear that as
more iterations occur, the isolated regions of anti-alignment shrink in physical size.
Eventually, the system becomes almost completely aligned with the magnetic field,
which is clear from figure 5(d).

Figure 6 show that addition of temperature does not affect the existence of these anti-
alignment regions. However it can be seen by comparison of figure 5(b) and figure
6(b) that a system with temperature aids the existence of these regions allowing them
to be maintained longer. Additionally in figure 6(d), it is clear that there is a bit
of variation in the dipole directions in neighboring dipoles. This variation is due to
random rotations that are simulating the temperature.

4.3 User Interface

In order to allow the program be more useful and accessible a user interface was
developed. We implement the Graphics Language User Interface (GLUI) extension
for OpenGL. This is a open source extension that allowed for buttons, control of
variables, movement of and through visualization, and display of current data. In
Figure 7, the relevant data and controls are displayed for the user to manipulate,
which allows the software to be more controllable.

5 Conclusions and Future Outlook

By visualizing magnetic dipoles, we are gaining insight into ferromagnetism and en-
ergy minimization. Our goal is to give scientists a better tool to look at ferromag-



(a) (b)
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Figure 5: (top) A plot of magnetization projected in the direction of the magnetic
field where temperature is not considered in the calculation. This plot and additional
figures demonstrate the connection between minimization and volume rendering. The
green X’s on the plot of the magnetization indicate where we are taking snapshots
of the volume rendering corresponding to (a)-(d), respectively. (b) and (c) clearly
demonstrate that there exist regions where the initial dipole orientation lead to a
slower alignment.



(a) (b)

(c) (d)

Figure 6: (top) A plot of magnetization projected in the direction of the magnetic field
where temperature is considered in the calculation. This plot and additional figures
demonstrate the connection between Hamiltonian minimization and volume rendering
when temperature is considered. The green X’s on the plot of the magnetization
indicate where we are taking snapshots of the volume rendering corresponding to
(a)-(d), respectively. Note: In comparison to Figure 5, these plots align more slowly
because temperature is considered.



Figure 7: A user interface for our software that allow easy access to information and
controls to operate the software.

netism. We hope that additionally we will be able to use our visualization to give
individuals who have not previously studied ferromagnetism a better understanding
of what underlying processes exist. Our visualization can demonstrate the Curie
temperature—the temperature at which a system can no longer be minimized—to
someone who has never had a single course in college level physics.

Our scheme for drawing dipoles and volume rendering is a starting point. We hope
that our research is only the first of many visual tools to allow a better understanding
of energy minimization in ferromagnetic systems. If our techniques were readapted
to utilize the graphics processing unit (GPU), we might be able to see better real-
time visualizations of large lattices. Additionally one could look at processing the
lattice on a super-computer or multi-core system. This would allow us to have faster
updating of large lattices. Lastly, this research could also benefit from visualization
on a virtual reality system, as it would allow the user to have a better perception of
the lattice.
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