
ASSESSMENT USING PEER EVALUATIONS, RANDOM PAIR ASSIGNMENT,
AND COLLABORATIVE PROGRAMING IN CS1

Timothy Urness
Department of Mathematics and Computer Science
Drake University
Des Moines, IA 50311
515 271-2118
timothy.urness@drake.edu

ABSTRACT

In this paper we describe a technique for student assessment that uses peer
evaluation and random pair assignment in collaborative programming assignments in
CS1. A common concern of professors implementing collaborative (pair) programming is
the potential for a student to not actively participate in the programming process. In this
case, a student’s skills and abilities may not be developed or evaluated. In addition to
traditional grading of an assignment, a survey was given to each student following every
assignment in order to assess the individual contribution and comprehension of the
assignment requirements. The survey asked each student to briefly evaluate his or her
teammate’s cooperation as well as to project the teammate’s ability to re-write the code.
The results of this assessment method indicate that the assignment quality greatly
increased and exam scores were comparable compared to previous course offerings when
assignments were completed individually.

INTRODUCTION

Programming is a critical component of most CS1 courses. Studies have shown
that requiring students to work in teams of two (pair programming) has many benefits.
The benefits include: code quality improvement, increased number of students
successfully passing the course, increased student enjoyment, lower levels of frustration,
and reduced instances of cheating [1, 2, 4, 8, 9]. Collaborative learning, such as pair
programming, is a more realistic model of how software is developed in industry as
opposed to the solitary programming conducted in many CS1 courses.

In order to assure that every student experiences the advantages of pair
programming, we have developed a system designed to evaluate and encourage
participation. First, each student is held responsible for their contribution to the pair
through the use of a peer evaluation that is delivered after each programming assignment
is completed. In order to assess the individual contribution and comprehension of the
assignment requirements, a survey was given to each student following every assignment.
The survey asked each student to briefly evaluate his or her teammate’s cooperation as
well as to project the teammate’s ability to re-write the submitted code. Additionally, the
programming pairs are randomly assigned throughout the semester. This ensures that one
student cannot “freeload” behind a friend or the same ambitious student throughout the
term.

For the purposes of this paper, we define the term “pair programming” to mean
two students working on a program that will be submitted jointly. Traditionally, pair

programming consists of two programmers working side-by-side at one computer [11]. It
has been shown that distributive pair programming can achieve the same benefits as
collocated pair programming [3]. For our purposes, we did not require teams to program
at the same time or to model the driver-navigator relationship that is sometimes
associated with pair programming. We also did not stipulate that students need to meet
face-to-face to collaborate. Instead, a “team lead” was designated and was responsible for
managing the work and final submission of the assignment.

RELATED WORK

Several studies have demonstrated that pair programming is an effective
pedagogical technique, especially in introductory computer science courses [5, 7, 10]. A
number of different benefits that these studies have shown include: code quality
improvement, increased number of students successfully passing the course, increased
student enjoyment, lower levels of frustration, and reduced instances of cheating [1, 2, 4,
8, 9]. Also, pair programming helps develop communication skills and teamwork that
will be required in industry [6, 11].

Additionally, the benefits extend to the teaching staff as pair programming often
decreases the number of questions from students and reduces the number of assignments
to grade by approximately half [9]. It has also been shown that distributed pair
programming can have the same benefits of teams working at the same computer [3].

MOTIVATION

There are several motivations for adopting pair programming in CS1. First, we
wanted to encourage students to interact. A traditional stereotype of computer scientists
states that their work is predominately isolated and solitary. In order to change this
perception of computer science (and possibly attract new majors to the field), we required
that students interact and work with other students in the class. Secondly, pair
programming would cut grading obligations roughly in half. Another motivation was to
increase the amount of code that students read during a semester. It is our impression that
a well-rounded computer scientist should be able to understand written code in addition
to writing and implementing algorithms. Collaborating in groups forces students to read
others code in addition to writing it themselves. In our opinion, code reading and code
comprehension is a skill that is often underdeveloped in CS1 courses and working in
pairs would force students to evaluate how their own code is read by others. Lastly, we
felt that introducing students to their peers and requiring collaboration could reduce the
level of frustration that a student experiences when he or she is beginning to learn to
program.

During the implementation of our random pair programming, we found that the
quality of the assignments was greatly improved over previous semesters when the
programs were developed individually. The results are discussed later in the paper.

CONCERNS

A common concern of professors implementing pair programming is the potential
for a student to not participate in the programming process. There is a significant
possibility that a student may not fully understand the code the team has submitted as a
student’s teammate may complete a vast majority of the assignment. In this undesirable

situation, the students’ skills and abilities may never be developed or evaluated.
Furthermore, individual skills or abilities could be sacrificed if the time developing
programs was shared. Would students fully understand the code their team is submitting?
Would pair programming lead to decreased individual exam scores?

We developed a method described in the following section to help ensure that
students were accountable for the skills that the programming assignments were intended
to reinforce.

METHODOLOGY

In an effort to achieve the advantages of pair programming as well as address the
concerns, we implemented the following system:

First, we randomly selected the teams. A randomly generated algorithm was
developed that paired two classmates together. The first student on the list was
responsible for submitting the homework assignment. We referred to this person as the
“team lead.” The random pairing algorithm was developed so that each student would get
the same number of opportunities to be the “team lead” throughout the course, while
being paired with random partners for each assignment.

We did not require the teams to meet outside of class or program at the same time.
While interaction was encouraged, we did not stipulate that students needed to meet face-
to-face to collaborate. Instead, the “team lead” was responsible for managing the work
and final submission of the assignment. This allowed students to communicate in a
variety of different methods (e.g. email, phone, Facebook, etc.) and removed the
restriction of requiring students to be in the same room in order to work on an
assignment. It also removed the restriction that pairs had to find time to work on the
assignment simultaneously. While some students chose to work together at the same
computer at the same time, most students shared access to code by emailing their
teammate.

Additionally, after each assignment was due, we required each student to fill out a
survey asking two questions designed to evaluate his or her teammate. The questions
asked students to rate their teammates on a Likert scale from 1 to 5 (see figure 1). The
numerical results of the survey were included in each student’s final assignment grade. In
an effort to keep the students anonymous and uninhibited to honestly evaluate their
teammate, the results of the peer evaluations were not disclosed to the students until after
the final exam. This anonymity prevented a student from knowing the points earned or
lost via a poor evaluation from a particular former teammate. It was our intention that this
would allow students to be accountable and honest when filling out the survey.

Figure 1: Survey questions asked after every programming assignment.

RESULTS

We compared the results of average exam scores and average programming
assignment scores from two different semesters of CS1. The first semester used
individual programming and the second semester used the pair programming and survey
approach described in the previous section. Figure 2 shows that the average assignment
quality over the course of seven programming assignments greatly increased when pair
programming was implemented. These results have also been reflected in previous
studies [7]. The exam scores did decline slightly when pair programming was used (90%
vs. 87.7%); however, the exam scores were comparable to the previous sessions of CS1
(see figure 3).

Figure 2: Average assignment scores of two semesters of CS1

Figure 3: Average exam scores of two semesters of CS1

ANALYSIS

The initial motivations of this technique were largely selfish in nature: to make
the class easier to teach and maintain by reducing the number of assignments to grade.
We were pleasantly surprised that the students also thrived in this environment. The
students demonstrated obvious benefits such as improved code quality and teamwork.

We have several hypotheses that explain the increased quality of the homework
submissions: First, working in a team provides motivation by making a student
accountable to another student in the class. We feel that a student in a team may work
harder to ensure all of the points in the assignment are earned; a student may be satisfied
with a lower grade if it only affects his or her grade. Secondly, the survey question that
asks “Is your partner easy to work with” often prompts the students to contact each other
shortly after the assignment is posted. In most cases, the pairs contact each other quickly
and start working on the assignment soon enough to ask clarifying questions (if
necessary) in order to complete the assignment and earn all of the points. The primary
complaint that is registered amongst students is that several days pass before the partner
responds to an email. This usually results in a partner giving a lower score for this
question on the survey. Lastly, collaborating on code allows someone else to see possible
mistakes or overlooked points.

An unanticipated positive side-effect of pair programming is that we saw fewer
students during office hours who were frustrated. The assigned partner would often help
frustrated or lost students, and we had very few instances of pair incompatibility.
Additionally, we saw fewer questions from students “stuck” on the homework
assignment the day before it was due when using pair programming.

CONCLUSION

We implemented a technique in which we conducted a brief survey after each
assignment was completed. The survey asked each student to evaluate their partner on
two questions: were they easy to work with and did they understand the code that was
submitted. The results of these questions were used in the final grade of each student.
Additionally we randomly assigned classmates in teams of two and switched the pairings
after each assignment. This was designed to prevent students from “hiding” or

“freeloading” behind the same partner and inhibiting the development or evaluation of
their abilities.

The results of pair programming in this implementation show a significant
increase in quality of programming assignments when compared to a previous semester
where individual programming was used. The individual exams scores were comparable
between semesters.

In conclusion, we have found assessment using peer evaluation and random pair
assignment in collaborative programming assignments in CS1 to be an effective
pedagogical approach. The results of this method indicate that the assignment quality
greatly increased and exam scores were comparable compared to a previous course
offering when assignments were completed individually.

REFERENCES
[1] Braught, G., Eby, L. M., Wahls, T., The effects of pair-programming on individual

programming skill, ACM SIGCSE Bulletin, 40, (1), 200-204, 2008.
[2] Hanks, B., McDowell, C., Draper, D., Krnjajic, M., Program quality with pair

programming in CS1, Proceedings of the 9th Annual SIGCSE Conference on
innovation and Technology in Computer Science Education, 176-180, 2004.

[3] Hanks, B., Student performance in CS1 with distributed pair programming,
Proceedings of the 10th Annual SIGCSE Conference on innovation and Technology
in Computer Science Education, 316-320, 2005.

[4] Hanks, B., Student attitudes toward pair programming, Proceedings of the 11th
Annual SIGCSE Conference on innovation and Technology in Computer Science
Education, 113-117, 2006.

[5] Jacobson, N., Schaefer, S. K., Pair programming in CS1: overcoming objections to its
adoption, SIGCSE Bulletin, 40, (2), 93-96, 2008.

[6] LeJeune, N., Critical components for successful collaborative learning in CS1,
Journal of Computing Sciences in Colleges, 19, (1), 275-285, 2003.

[7] McDowell, C., Werner, L., Bullock, H., Fernald, J., The effects of pair-programming
on performance in an introductory programming course, Proceedings of the 33rd
SIGCSE Technical Symposium on Computer Science Education, 38-42, 2002.

[8] Mendes, E., Al-Fakhri, L., Luxton-Reilly, A., A replicated experiment of pair-
programming in a 2nd-year software development and design computer science
course, Proceedings of the 11th Annual SIGCSE Conference on innovation and
Technology in Computer Science Education, 108-112, 2006.

[9] Mendes, E., Al-Fakhri, L. B., Luxton-Reilly, A., Investigating pair-programming in a
2nd-year software development and design computer science course, Proceedings of
the 10th Annual SIGCSE Conference on innovation and Technology in Computer
Science Education, 296-300, 2005.

[10] Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., Balik, S.,
Improving the CS1 experience with pair programming, Proceedings of the 34th
SIGCSE Technical Symposium on Computer Science Education, 359-362, 2003.

 [11] Williams, L., Lessons learned from seven years of pair programming at North
Carolina State University, SIGCSE Bulletin, 39, (4), 79-83, 2007.

