
USING	INTERVIEW	QUESTIONS	AS	SHORT-TERM	PROGRAMMING	ASSIGNMENTS	
IN	CS2	
	
Timothy	Urness	
Department	of	Mathematics	and	Computer	Science	
Drake	University	
Des	Moines,	IA	50311	
515-271-2118	
timothy.urness@drake.edu	
	
ABSTRACT	

In	this	paper,	we	describe	our	experiences	with	using	technical	interview	
questions	as	the	basis	for	programming	assignments	in	a	CS2	course.	Several	books	
have	been	published	that	chronicle	popular	questions	that	have	been	asked	on	
technical	interviews	at	companies	such	as	Microsoft,	Google,	Apple,	Facebook,	and	
Amazon.	The	books	are	written	as	a	service	to	professionals	interviewing	for	a	job,	
but	they	also	serve	as	an	excellent	set	of	short	exemplar	questions	from	concepts	
that	are	typically	covered	in	an	introductory	programming	sequence.	We	found	that	
the	programming	assignments	based	on	interview	questions	were	particularly	
motivating	for	students.	The	interview	questions,	given	in	short-term	programming	
assignments	throughout	the	semester,	resulted	in	an	increased	performance	on	
midterm	exams	and	final	exams	when	compared	to	the	performance	of	students	in	a	
section	that	utilized	standard	programming	assignments.			
	
INTRODUCTION	

We	have	recently	noticed	students	preparing	for	a	technical	interview	by	
studying	a	book	designed	to	prepare	applicants	for	a	variety	of	possible	questions	
they	might	encounter.	Upon	closer	evaluation,	we	discovered	several	books	[2,	7,	8]	
that	give	advice	for	the	preparation	for	technical	interviews	at	companies	such	as	
Microsoft,	Google,	Apple,	Facebook,	and	Amazon.	These	resources	chronicle	popular	
questions	that	have	been	asked	by	interviewers.	The	questions	often	probe	an	
applicants’	understanding	in	algorithm	analysis	and	basic	data	structures	(e.g.	
arrays,	stacks,	linked	lists,	queues,	hash	tables),	which	is	typically	much	of	the	
content	of	CS1	and	CS2	courses.		

A	standard	section	of	CS2	at	Drake	University,	a	small	liberal-arts	college,	
would	traditionally	entail	several	standard,	long-term	programming	projects	that	
are	large	in	scope,	require	many	lines	of	code,	and	would	have	deadlines	of	
approximately	one	to	two	weeks.	In	the	updated	interview	question	assignments	
section,	students	were	assigned	smaller	projects	throughout	the	semester	that	were	
due	before	the	following	class	meeting.	The	smaller	projects	were	largely	inspired	
by	questions	that	were	asked	at	interviews	for	large	technology	companies,	as	
published	in	various	technical	interview	preparation	books.		

Our	hypothesis	was	that	students	could	benefit	from	the	rapid	interview	
question	assignments	due	to	the	increased,	intensive	practice	required	of	the	short-
term	assignments.	We	also	believed	that	the	fact	that	these	assignments	were	
inspired	from	“real	world”	interview	questions	would	help	inspire	and	motivate	the	

students.	We	also	wanted	to	measure	if	the	absence	of	long-range	software	projects	
affected	students’	understanding	of	software	engineering	principles	and	concepts	
that	would	be	introduced	and	discussed	in	class,	but	not	practiced	until	later	
courses	in	the	curriculum.	In	addition	to	anecdotal	observations,	we	analyzed	these	
sets	of	skills	and	abilities	through	a	final	exam	that	was	common	to	both	sets	of	
students.	The	final	exam	included	questions	that	allowed	for	the	assessment	of	
fundamental,	small-scale	data	structure	comprehension	and	development	as	well	as	
large-scale	software	development	questions.		
	
RELATED	WORK	

Numerous	studies	have	shown	the	importance	of	programming	assignments	
in	the	introductory	CS1	and	CS2	sequence.		Several	studies	have	suggested	the	
importance	of	making	assignments	“meaningful”	or	of	a	practical	usefulness	for	
student	engagement	and	attracting	students	to	computer	science	[1,	6,	11].		

Nick	Parlante,	from	Stanford	University,	annually	hosts	a	“nifty	assignments”	
session	at	the	SIGCSE	conference	that	showcases	several	assignments	which	have	
been	proven	to	be	particularly	popular,	useful,	illustrative	and	adoptable	for	other	
professors	[10].	The	publication	of	these	assignments	is	a	tremendous	service	for	
faculty	looking	for	proven	assignments	that	have	engaged	students	on	a	variety	of	
topics,	typically	in	CS1	or	CS2.	

Many	studies	have	utilized	meta-data	that	has	been	automatically	collected	in	
student	assignment	submissions.	Data	such	as	when	the	students	first	submit	
solutions,	what	kinds	of	compilation	errors	students	experience,	and	how	often	
students	submit	can	give	clear	indications	as	to	the	effective	and	ineffective	
behaviors	of	student	programmers.	Many	of	these	studies	reinforce	the	intuition	of	
professors:	starting	assignments	sooner	often	results	in	better	grades	and	fewer	
frustrations	[3,	4].	Also,	students	tend	to	underestimate	how	long	assignments	will	
take	[9].	
	
METHODOLOGY	

The	CS2	course	at	Drake	University	focuses	on	the	use	and	implementation	of	
various	data	structures:	arrays,	linked	lists,	binary	trees,	stacks,	queues,	hash	tables,	
and	heaps.	Each	class	meeting	typically	involves	a	lecture	by	the	professor	in	
addition	to	in-class,	hands-on	student	programming	exercises	on	individual	laptops.	
Classes	are	taught	twice	a	week;	each	class	meeting	lasts	75	minutes.	The	course	is	
evaluated	with	two	midterm	exams	and	a	comprehensive	final	exam.	

The	session	of	the	course	which	utilized	the	traditional,	long-term	
assignments	consisted	of	33	students	and	was	taught	in	the	spring	of	2015.	Nine	of	
the	students	were	female	(27.3%).	The	assignments	were	taken	from	various	
sources,	including	several	nifty	assignments	[10].	The	short-term	interview	question	
assignments	section	of	the	course	consisted	of	24	students	and	was	taught	in	the	fall	
of	2015.	Eight	of	the	students	were	female	(33.3%).	The	assignments	were	taken	
from	various	sources,	including	the	textbook	[5]	and	technical	interview	questions	
encountered	by	students	as	well	as	technical	interview	resources	[2,	7,	8].	Each	
assignment	was	due	prior	to	the	next	class	period.	

	

RESULTS	AND	ANALYSIS	
Exam	Averages	

Initially,	the	students	in	the	long-term	assignment	section	appeared	to	be	
better	equipped	for	the	course	material	than	their	counterparts	in	the	short-term	
assignment	section	of	the	course.	Anecdotally,	the	long-term	assignment	section	
students	appeared	to	be	extraordinarily	interested	and	engaged	in	the	material.	This	
was	evidenced	by	the	discrepancy	in	the	results	of	the	first	exam,	which	was	
administered	roughly	halfway	through	the	semester	(88.73%	vs.	83.85%).	

	
Figure	1:	Relative	exam	differences	between	the	two	sections.	The	interview	

question	assignment	section	average	subtracted	from	the	long-term	
assignment	average	highlights	the	difference	between	the	sections.	

	
However,	 the	 students	 that	 were	 enrolled	 in	 the	 interview	 question	

assignment	 section	appeared	 invigorated	by	 the	continual	 challenges	of	 the	short-
term,	 interview	 question	 assignments	 and	 were	 undeterred	 by	 early	 challenges.	
These	students	thrived	during	the	semester,	particularly	bolstered	by	the	practical	
content	of	 the	assignments,	which	were	 inspired	by	 technical	 interview	questions.	
The	 effects	 of	 the	 increased	 practice	 generated	 by	 the	 frequent	 short-term	
assignments	are	seen	by	 the	second	midterm	 in	which	 the	score	were	remarkably	
similar	 (90.0%	 vs.	 90.4%).	 By	 the	 final	 exam,	 the	 short-term	 assignment	 group	
surpassed	the	long-term	assignment	group	in	average	exam	score	(85.2%	vs.	85.6%).	
Final	Exam	Questions	

Table	 1	 displays	 a	 selection	 of	 the	 exam	 questions	 that	 highlight	 the	most	
significant	differences	between	the	two	sections.		

	

#	 Final	exam	question	

1	 A	class	is	similar	to	a	structure	in	that	they	define	an	abstract	data	type.	How	are	classes	and	structures	
different?	

2	 What	is	a	function	prototype?		Why	is	it	used?	

3	 How	is	a	queue	different	than	a	linked	list?	How	are	they	similar?			

4	 What	are	the	advantages	of	using	a	STL	vector	over	a	standard	array?	List	two.	

5	 How	is	a	binary	search	tree	different	than	a	complete	binary	tree?	

6	 What	advantages	does	a	hash	table	have	over	an	array?	Explain	why.	

7	 In	Computer	Science,	what	is	the	“big-Oh”	notation	used	for	and	why	is	it	useful?	What	is	the	big-Oh	
running	time	of	the	following	algorithm?	(algorithm	listed	–	merge	sort)	

8	 Given	a	string	as	a	parameter,	write	a	method	that	determines	if	the	string	is	a	palindrome	(is	the	same	
forward	and	backwards	–	e.g.	otto,	mom,	dad,	racecar).	The	function	should	return	either	true	or	false.	

9	 Write	an	example	of	recursion.	

10	 Given	the	code	
int	num	=	25;	
int	*ptr;	
Finish	the	code,	using	the	variable	ptr,	to	print	out	the	value	25.	

11	 Given	the	following	picture	of	memory,	what	will	be	output	when	the	code	is	run?	 	

12	 Implement	a	Set	data	type	that	will	work	for	storing	a	mathematical	set	of	integers.		

13	 Suppose	you	were	asked	to	write	the	software	that	would	handle	an	online	voting	system	for	a	college	
campus.	 Describe	 (and/or	 diagram)	 the	 classes	 how	 you	would	 use.	 Also	 explicitly	 indicate	 how	 you	
would	use	inheritance.	

Table	1:	A	selection	of	final	exam	questions.	

	
Figure	2:	Average	percentage	of	exam	questions	of	the	standard	assignments	

section	and	interview	question	assignments	section		
	
Interview	Question	Assignments	Advantages	

Of	particular	interest	are	questions	in	which	the	interview	question	
assignment	section	performed	better	than	the	standard	assignment	section.	

Questions	3,	4,	5,	and	8	involve	the	properties	of	data	structures	and	the	details	of	
how	data	structures	differ.	The	interview	question	assignment	section	was	able	to	
cover	more	of	these	kinds	of	question	with	assignments.	As	a	result,	the	students	
had	individually	practiced	on	these	topics	and	were	not	only	limited	to	classroom	
coverage	and	in-class	exercises	of	the	materials.	In	general,	the	short-term	interview	
question	assignments	section	was	more	focused	on	implementation	details	of	a	
wider	variety	of	data	structures	than	the	long-term	assignment	section	allowed,	as	
evidenced	by	the	improved	performance	on	these	questions.		
	
Long-Term	Assignments	Advantages	

Questions	in	which	the	long-term	assignment	section	performed	better	than	
the	short-term	section	include	question	6,	which	asks	about	the	hash	table	data	
structure.	The	long-term	section	had	a	specific	assignment	in	which	the	students	
thoroughly	implemented	the	hash	table	in	the	context	of	an	assignment.	Similarly,	
question	9	(recursion)	was	reinforced	by	an	assignment.	This	group	also	performed	
well	on	the	questions	regarding	pointers	(question	10).	This	concept	was	covered	
early	in	the	semester,	and	the	students	in	the	standard	assignment	section,	on	
average,	showed	a	high	aptitude	for	this	material,	as	evidenced	by	the	first	exam	
results.		
	
The	Length	of	Programming	Assignments	

When	presented	with	a	long-term	programming	assignment	in	an	
introductory	course,	students	have	a	few	things	immediately	working	against	them.	
First,	starting	on	the	assignment	early	does	not	obviously	nor	immediately	reward	
students.	While	some	students	have	certainly	taken	the	advice	from	professors	to	
start	on	assignments	early,	there	exists	sufficient	data	that	many	students	do	
procrastinate	working	on	assignments	to	a	point	where	it	negatively	affects	their	
performance	in	the	course	[3,	4,	9].	Studies	have	shown	that	students	who	do	not	
start	working	until	the	day	before	an	assignment	is	due	perform	significantly	poorer	
than	those	who	start	two	or	more	days	before	the	assignment	is	due.	A	second	
detriment	to	the	long-term	assignment	is	that	students	often	underestimate	the	
amount	of	time	programming	projects	will	require	[9].		

Thus,	the	long-term	assignment	can	form	a	trap:	starting	on	the	assignment	
early	does	not	obviously	nor	immediately	reward	students.	Once	behind,	students	
may	not	realize	they	are	behind	as	they	don’t	accurately	estimate	the	time	that	will	
be	required	to	complete	the	assignment.	
	
CONCLUSIONS	

We	believe	that	students	benefit	from	developing	a	habit	of	practicing	to	
program	on	a	regular	basis.	Our	experience	is	that	requiring	assignments	with	short	
deadlines	that	draw	upon	technical	interview	questions	motivate	students	to	
develop	consistent	programming	habits	that	result	in	increased	performance	on	
midterm	and	final	exams.	The	increased	practice	and	focus	on	implementation,	as	
well	as	the	breath	of	coverage	on	the	assignments,	ultimately	benefited	the	short-
term	assignment	students.	The	regularity	of	the	assignments	didn’t	allow	for	long-
term	procrastination.	

However,	the	importance	of	long-term	programming	assignments	cannot	be	
understated.	In	addition	to	the	conceptual	understanding	and	implementation	of	
basic	data	structures,	students	should	have	practice	utilizing	data	structures	in	
complicated,	involved	solutions	that	require	the	development	of	sound,	software	
engineering	practices.	It	is	our	opinion	that	CS2	is	an	excellent	place	to	establish	the	
fundamentals	of	the	data	structures	using	short	interview-like	programming	
assignments.	Long-term	assignments	can	effectively	be	used	in	upper-division	
courses	to	develop	a	deeper	understanding	and	practice	using	the	tools	introduced	
in	CS2.	

In	summary,	we	feel	that	the	best	practice	for	the	instruction	of	students	
learning	programming	in	an	introductory	sequence	is	to	utilize	short-term	deadlines	
that	properly	incentivize	students	to	get	started	working	on	assignments	with	
regularity	sooner	rather	than	later.		Long-term,	“nifty”	assignments	are	excellent	
resources	and	could	be	most	effective	with	shorter-term	midpoint	deadlines	that	
ensure	students	do	not	underestimate	the	necessary	time	for	completion.	
	
REFERENCES	
[1]	Anderson,	R.,E.,	Ernst,	M.,D.,	Ordóñez,	R.,	Pham,	P.,	Tribelhorn,	B.,	A	Data	
Programming	CS1	Course.	Proceedings	of	the	46th	ACM	Technical	Symposium	on	
Computer	Science	Education	(SIGCSE	'15),	150-155,	2015.		
[2]	Aziz,	A.,	Lee,	T.	H.,	Prakash,	A.,	Elements	of	Programming	Interviews:	The	Insiders'	
Guide,	CreateSpace	Independent	Publishing,	2012.	
[3]	Edwards,	S.H.,	Snyder,	J.,	Pérez-Quiñones,	M.A.,	Allevato,	A.,	Kim	D.,	Tretola,	B.,	
Comparing	effective	and	ineffective	behaviors	of	student	programmers.	Proceedings	
of	the	fifth	international	workshop	on	Computing	education	research	workshop	(ICER	
'09),	3-14,	2009.		
[4]	Fenwick,	Jr.	J.B.,	Norris,	C.,	Barry,	F.E.,	Rountree,	J.,	Spicer,	C.J.,	Cheek,	S.D.,	
Another	look	at	the	behaviors	of	novice	programmers.	Proceedings	of	the	40th	ACM	
technical	symposium	on	Computer	science	education	(SIGCSE	'09),	296-300,	2009.	
[5]	Gaddis,	T.,	Starting	Out	with	C++	from	Control	Structures	to	Objects.	Upper	Saddle	
River,	NJ.,	Pearson	Education,	Inc.,	2015.	
[6]	Layman,	L.,	Williams,	L.,	Slaten,	K.,	Note	to	self:	make	assignments	meaningful.	
Proceedings	of	the	38th	SIGCSE	technical	symposium	on	Computer	science	
education	(SIGCSE	'07),	459-463,	2007.	
[7]	McDowell,	G.	L.,	Cracking	the	Coding	Interview:	150	Programming	Questions	and	
Solutions,	5th	Edition,	Palo	Alto,	CA.,	CareerCup	LLC,	2013.	
[8]	Mongan,	J.,	Suojanen,	N.,	Giguère,	E.,	Programming	Interviews	Exposed:	Secrets	to	
Landing	Your	Next	Job.	Indianapolis,	IN:	John	Wiley	&	Sons,	2012.	
[9]	Murphy,	C.,	Kaiser,	G.,	Loveland,	K.,	and	Hasan,	S.,	2009.	Retina:	helping	students	
and	instructors	based	on	observed	programming	activities.	Proceedings	of	the	40th	
ACM	technical	symposium	on	Computer	science	education	(SIGCSE	'09),	178-182,	
2009.	
[10]	Parlante,	N.	Nifty	Assignments,	http://nifty.stanford.edu/,	2016.	
[11]	Stevenson,	D.	E.,	Wagner,	P.,	J.,	2006.	Developing	real-world	programming	
assignments	for	CS1.	Proceedings	of	the	11th	annual	SIGCSE	conference	on	Innovation	
and	technology	in	computer	science	education	(ITICSE	'06),	158-162,	2006.	

