CS65: Introduction to Computer Science

August 30, 2022

Syllabus
Logistics
Introduction to Algorithms

Welcome to CS 65

Road Map

- Brief introduction
- Course logistics
- Topics
 - Algorithms
 - Programming
 - Computer program
 - How to program
 - Pseudocode
 - Writing program in a specific language eg Python
 - Integrated Development Environment (IDE)

Introduction

Md Alimoor Reza

• Assistant Professor of Computer Science, Dept. of Mathematics

and Computer Science, Drake University

• Office: 323 Collier-Scripps

• Email: md.reza@drake.edu

• **Phone:** 515-271-1972

• **Office hours:** T/W/R: 12:30-1:30pm CDT

additionally by appointment

Zoom link

Prior Teaching Experience

- Prior teaching experience
 - Drake University
 - Introduction to Computer Science (Fall'21, Spring'22)
 - Computer Vision (Spring'22)
 - Indiana University Bloomington
 - Computer Vision (Spring'21)
 - Artificial Intelligence (Fall'18)

- George Mason University
 - Introduction to Computing, Object Oriented Programming, Data Mining

About My Research

- Research
 - Passionate about Artificial Intelligence (A.I.) for Robots
 - Studying various types of images and finding meaningful concepts from them

Object Detection

Semantic Segmentation

Introduction

- Additional help
 - CS tutors are provided (free for CS 65)
 - Individual appointments:
 - Starfish->Services->Tutoring Center
- Now your turn, briefly introduce yourselves!
 - Your name
 - Major
 - Why you are interested in this course?
 - Hobby/interest

- This is an introductory course. Four years of high school mathematics or MATH 20. Logical thinking and basic familiarity with computer and its applications are helpful
- Most of the course content lectures, assignments, labs, etc will be hosted at
 - https://drake.blackboard.com
- I also maintain an online schedule which can be found below:
 - http://analytics.drake.edu/~reza/teaching/cs65_fall22/cs65_schedule.html

- Coursework for will include:
 - attending the class (in-person)
 - individual and collaborative programming assignments
 - lab assignments,
 - quizzes
 - a final project
 - a midterm and a final exam
- Read the syllabus @ Blackboard (also can be found below)
 - http://analytics.drake.edu/~reza/teaching/cs65_fall22/cs65_syllabus_fall22.pdf

Course Schedule (tentative)

analytics.drake.edu/~reza/teaching/cs65_fall22/cs65_schedule.html

CS 65: Introduction to Computer Science Fall 2022

Instructor: Md Alimoor Reza

Assistant Professor of Computer Science Department of Mathematics and Computer Science Drake University

Class room: Collier-Scripps # 301 Meeting time (Section#1004): Tues (09:30am-10:45pm) and Thurs (09:30am-10:45pm) Meeting time (Section#1791): Tues (11:00am-12:15pm) and Thurs (11:00am-12:15pm) Office hours: Tues + Wed + Thurs (03:30pm-4:30pm) or by appointment

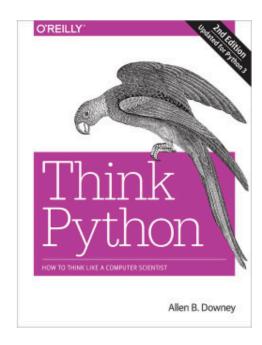
Schedule

A tentative schedule below (subject to change as we progress).

Topic	Reading	Items due
Introduction to Computer Science Lecture 1 slide Lab 1		
Variables, expression, and statements Lecture 2 slide	Reading: Chapter 1, Chapter 2	
Functions (part 1) Lecture 3 slide	Reading: Chapter 3	
Functions (part 2) Lecture 4 slide Lab 2	Reading: Chapter 3	Lab 1 (due by 09/08)
Interface design (part 1) Lecture 5 slide	Reading: Graphics	Quiz 1
Interface design (part 2) Lecture 6 slide Lab 3	Reading: Graphics	Lab 2 (due by 09/15)
Boolean expression Conditionals Lecture 7 slide	Reading: Chapter 5	
Random numbers Loops (while loop) Lecture 8 slide Assignment 1	Reading: Chapter 7	Lab 3 (due by 09/22)
	Introduction to Computer Science Lecture 1 slide Lab 1 Variables, expression, and statements Lecture 2 slide Functions (part 1) Lecture 3 slide Functions (part 2) Lecture 4 slide Lab 2 Interface design (part 1) Lecture 5 slide Interface design (part 2) Lecture 6 slide Lab 3 Boolean expression Conditionals Lecture 7 slide Random numbers Loops (while loop) Lecture 8 slide	Introduction to Computer Science Lecture 1 slide Lab 1 Variables, expression, and statements Lecture 2 slide Functions (part 1) Lecture 3 slide Functions (part 2) Lecture 4 slide Lab 2 Interface design (part 1) Lecture 5 slide Interface design (part 2) Lecture 6 slide Lab 3 Boolean expression Conditionals Lecture 7 slide Random numbers Loops (while loop) Lecture 8 slide Reading: Chapter 7 Reading: Chapter 5 Reading: Chapter 5 Reading: Chapter 5

• Grading policy:

- Programming Assignments (25%). Homework programming activities.
- Labs (15%). Implementations of specific concepts (relatively easier than homework assignments).
- Quizzes (10%). true/false, fill in the blanks, etc.
- Midterm (20%). Paper based exam midway through the semester.
- Final (20%). Paper based exam by the end of the semester.
- Final project (10%). Your proposed group project (2-3 members).

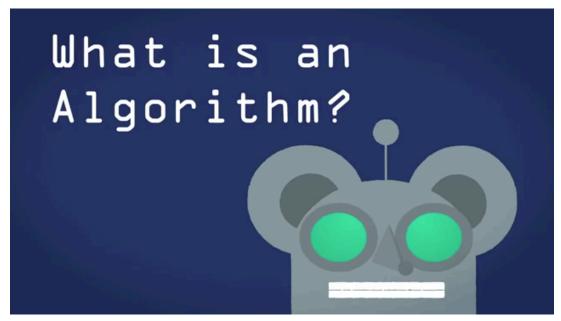

Grading scale:

- A (93%-100%) A- (90%-92.9%) B+ (87%-89.9%)

- B (84%-86.9%) B- (80%-83.9%) C+ (77%-79.9%)

- C (74%-76.9%) C- (70%-73.9%) D (60%-69.9%)
- F (0%-59.9%)

- Textbook
 - Think Python 2nd Edition by Allen B. Downey
 - free copy available online at https://greenteapress.com/wp/think-python-2e
 - Weekly readings are provided


- Read the syllabus @ Blackboard (also can be found below)
 - http://analytics.drake.edu/~reza/teaching/cs65_fall22/cs65_syllabus_fall22.pdf
- Important highlights:
 - Grading requirement and grading scale (tentative)
 - Attendance policy
 - Deadline policy
 - Technology requirement
 - Academic integrity
 - Mask policy

Road Map

- Brief introduction
- Course logistics
- Topics
 - Algorithms
 - Programming
 - Computer program
 - How to program
 - Pseudocode
 - Writing program in a specific language eg Python
 - Integrated Development Environment (IDE)

Introduction to Computer Science


- Focus of this course would be the study of computer <u>algorithms</u>
- Algorithm
 - A crucial component in problem solving
 - step-by-step instructions to be executed by the machine
 - here is a toy example

Reference: BBC Learning

Introduction to Computer Science

- Algorithm:
 - step-by-step instructions to be executed by the machine
 - more realistic algorithm in robotics (from my research)

Me with Baxter

Baxter robot with a goal of fetching an specific object ie, Pringles from the shelf

Introduction to Computer Science

- Algorithm:
 - step-by-step instructions to be executed by the machine
 - your turn! let's do a group activity for 5 minutes
 - Describe the process of making a trip from USA to Europe?
 - Person next to you (in zoom breakout room) is your partner
 - Write down the steps

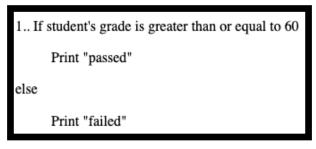
What is programming?

- Computers/computing devices are everywhere
 - desktop, laptop, smartphone, robot, microwave, etc

- Computers/computing devices are <u>tools that can be programmed</u> to perform many functions:
 - implement algorithms to solve problems
 - calculate numbers
 - watch videos
 - write notes
 - design models etc

What are computer programs?

- A program is a sequence of instructions that specifies how to perform a computation
 - can be written by a specific programming language
- <u>Programming languages</u> are formal language to express computations
 - Python
 - Java
 - C/C++


- Programming languages have strict rules, known as <u>syntax</u> that must be followed
 - Specific keywords need to be used to perform some action
 - Specific structure to be followed
 - Naming convention

How to write a program?

- Programs must be designed before they are written
- Program development cycle
 - Design a program (eg, in pseudocode)
 - Write the code (in a programming language like python)
 - Correct the syntax errors
 - Test the program
 - Correct the logic errors

Pseudocode

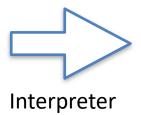
- Pseudocode is an informal language that has no syntax
 - the examples we have seen before (brushing tooth, robot grasping, making Euro trip) can be written in pseudocode

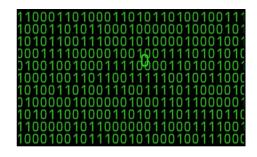
example pseudocode

- Not meant to be compiled or executed
- Used to create model program
 - less worry about the syntax, more focus on the logic/design
 - Can be translated into actual code in any programming language eg, Python

Exercise

- Describe the process of making a trip from USA to Europe?
 - Person next to you is your partner (in zoom breakout room)
 - Now write down your previous solution in pseudocode


Python


• Python is a programming language

- Purpose is to convert
 - what a programmer writes —> machine executable instructions
- Programmer writes python source code following specific syntax
- There is an interpreter (another program which executes computer code)

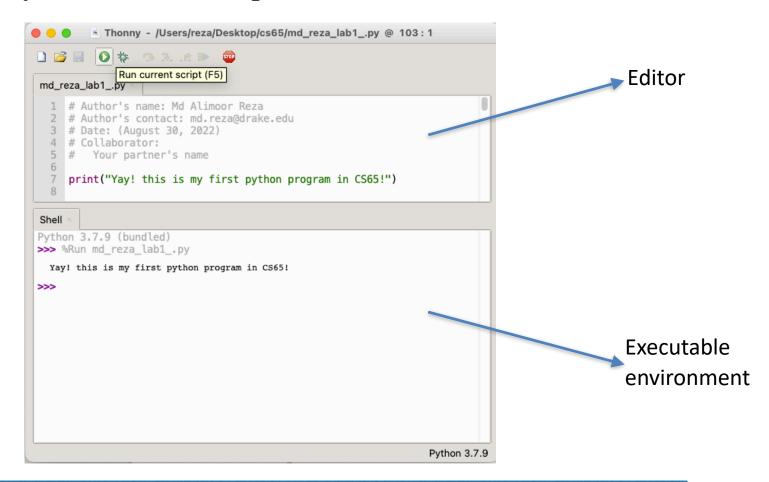
```
n = 5
string = "Hello!"
print(string * n)
```


Python code

Machine readable instructions

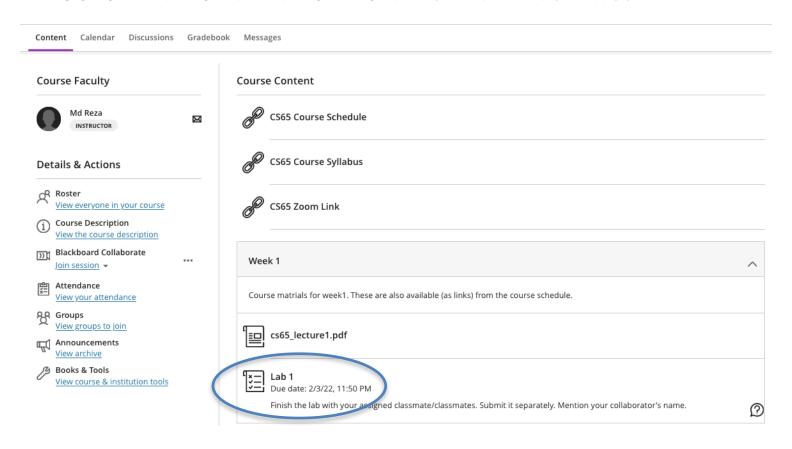
Python Keywords

- Programming languages have keywords/reserved words
 - Words that have specified meaning as part of the syntax of the language
- Python's keywords


and	del	from	not	while
as	elif	global	or	with
assert	else	if	pass	yield
break	except	import	print	
class	exec	in	raise	
continue	finally	is	return	
def	for	lambda	try	

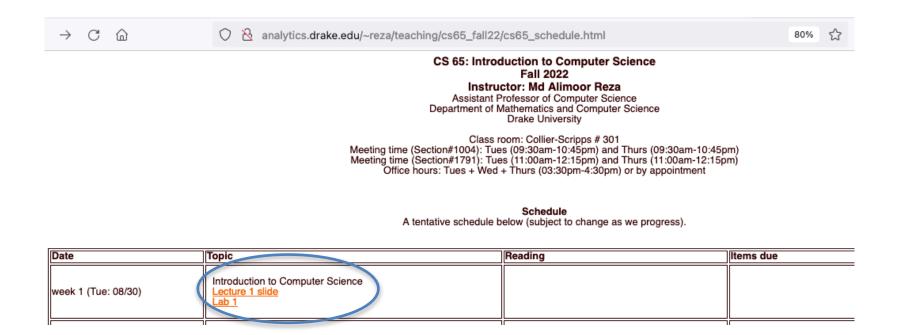
Integrated Development Environment

- Integrated Development Environment (IDE) is tool or software system that programmers use to create, run, and test new programs
 - text editor
 - writing python code
 - compiler/interpreter
 - for translating the code into machine understandable instructions
 - executable environment
 - for showing the result of the program
- We will be using the Python programming language along with an IDE for creating Python programs
- Thonny as an IDE
 - very user friendly tool
 - freely available online


Integrated Development Environment

• Demo by Reza in his computer

Lab Activity


• Go to Blackboard and download the Lab1 under 'Week 1'

• Follow the steps as provided in the Lab1 guide to setup Thonny in your computer

Lab Activity

• Additionally— all the materials will be available (as links) in the schedule

Summary

- Main takeaway from this lecture:
 - We will be studying algorithms
 - You will be implementing various algorithms using Python programming language in Thonny (IDE)
- To do: Follow the instructions in Lab1 Thonny installation
- To do: Finish the provided reading Chapter 1

Date	Topic	Reading
week 1 (Tue: 08/30)	Introduction to Computer Science Lecture 1 slide Lab 1	
week 1 (Thu: 09/01)	Variables, expression, and statements <u>Lecture 2 slide</u>	Reading: Chapter 1, Chapter 2