CS195: Computer Vision

Fine-tuning popular CNNs for image recognition

Wednesday, September 25th, 2024

Prake

UNIVERSITY

CS 195: Computer Vision (Dr Alimoor Reza)

Today’s Agenda

e Training vs. Fine-tuning

CS 195: Computer Vision (Dr Alimoor Reza)

Training a Model

» Training refers to the process of training a model from scratch, often on a
large and general dataset (e.g., ImageNet for image classification).

Useless model Trained model

IMAGENET

A deep neural
network A deep neural
with randomly network
initialized with learned
weights weights
parameters
A dataset with over 1 million images
Feed to Training is
a model Complete

for training

CS 195: Computer Vision (Dr Alimoor Reza)

How to train your CNN? IMAGENET

A dataset with over 1 million images

« If we consider a collection of training examples and Sum the error term
over all examples

E(w) = Z Error(X; ,y; ,W) = Z (y; — f(x,, w))?

e Minimize errors using an optimization algorithm:
e Gradient Descent (GD)
e Stochastic Gradient Descent (SGD) E(w) termisalso

known as loss function

CS 195: Computer Vision (Dr Alimoor Reza)

How to train your CNN?

» Every neural network consists of numerous weight parameters across its
various layers, which must be learned through an optimization technique.

e There are several optimization techniques:

Gradient Descent (GD)

Stochastic Gradient Descent (SGD)
Adam

RMSProp

CS 195: Computer Vision (Dr Alimoor Reza)

How to train your CNN?

« |nitialize the weight vector at a random position WOld (random set of values)

» Keep doing the following two steps sequentially until the loss function gets to
a low value (eg, below a threshold)

e Step 1: calculate how much the loss function would change if we
make a small change with respect to one weight component without
perturbing any other weight terms. This is the gradient term
corresponding to that particular weight. When you put them all
together, they become the gradient vector:

VE(W)

e Step 2: adjust (or update) the values of the weights based on the
gradient vector computed in the previous step:

whew — Wold —7n VE(W)
a fixed lcegrning rate

CS 195: Computer Vision (Dr Alimoor Reza)

How to train your CNN?

Stochastic Gradient Descent (SGD)

« Keep doing the Gradient Descent, but instead of using all the training
samples, use small subset of training samples picked randomly when
computing the gradient vector

 divide the entire training data into mini batches
» calculate the gradient vector based on that batch V E(w)
« adjust (or update) the values of the weights based on the gradient vector

to that batch d
witW = w?@ — n VE(w)

CS 195: Computer Vision (Dr Alimoor Reza)

N training examples

Stochastic Gradient Descent (SGD)

=

eg, N=64, B=4

create mini-batches ' Batch: N/B
with batch size of B

Batch: 3 : :
Batch: 2

Batch: 1

-

_

Do Gradient
Descent on
each batch
sequentially

~

W,

CS 195: Computer Vision (Dr Alimoor Reza)

Useful Online Resources for Gradient Descent

Another mathematical derivation for Gradient Descent

One more mathematical derivation for Gradient Descent
Google course’s Gradient Descent

Visualization of Gradient Descent

Visual explanation of Gradient Descent and other optimizers

CS 195: Computer Vision (Dr Alimoor Reza)

https://mccormickml.com/2014/03/04/gradient-descent-derivation/
https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e
https://developers.google.com/machine-learning/crash-course/reducing-loss/gradient-descent
https://github.com/lilipads/gradient_descent_viz
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Fine-tuning a Model

e Fine-tuning refers to the process of taking a pre-trained model and further
training it on a new or specific dataset. The initial model is often trained
on a large and general dataset, e.g., ImageNet, and fine-tuning adapts the
model to perform well on a more specific task or dataset.

Fine-tuned
model

UWS-DATASET

Crocodile Dolphin

A deep neural
network

with learned
weights from
ImageNet

An animal dataset with 500 images

in Underwater environment
Feed to Fine-tuning is
an already complete
trained model

CS 195: Computer Vision (Dr Alimoor Reza)

Today’s Agenda

e Fine-tuning a popular CNN (eg, AlexNet) using an arbitrary dataset

CS 195: Computer Vision (Dr Alimoor Reza)

Fine-tuning AlexNet on an Arbitrary Dataset

e Let’s use one of the popular CNNs

o AlexNet

UWS-DATASET

Crocodile Dolphin

e Let’s fine-tune AlexNet with a new
dataset eg, UWS-DATASET

An animal dataset with 500 images
in Underwater environment

CS 195: Computer Vision (Dr Alimoor Reza)

Existing Dataset in PyTorch

» Notice these are some of the datasets provided by PyTorch.

Image classification

Caltech10
1(root[, target_type, transform,...])

Caltech 101 Dataset.

Caltech256(root[, transform,...]) Caltech 256 Dataset.

Large-scale CelebFaces Attributes (CelebA)

CelebA(root[, split, target_type,...]) o

CIFAR10(root[, train, transform,...]) CIFART0 Dataset.

CS 195: Computer Vision (Dr Alimoor Reza)

Fine-tuning AlexNet on an Arbitrary Dataset

« Download the following dataset and put it into your Google Drive

¢ Underwater Animal Dataset (partial)

o Each image size: HxXWx3

= Note that these are color images

o Each image is associated with a label from 10 classes
o Training set of 241 examples and test set of 60 examples

https://analytics.drake.edu/~reza/teaching/cs195 fall24/datasets/uws _v1 partial.zip

CS 195: Computer Vision (Dr Alimoor Reza)

https://analytics.drake.edu/~reza/teaching/cs195_fall24/datasets/uws_v1_partial.zip

Fine-tuning AlexNet on an Arbitrary Dataset

e This is a random dataset of images, unlike the datasets provided by PyTorch.

Image classification

Caltech10
1(root[, target_type, transform,...])

Caltech 101 Dataset.

Caltech256(root[, transform,...]) Caltech 256 Dataset.

Large-scale CelebFaces Attributes (CelebA)

CelebA(root[, split, target_type,...]) Dataset Dataset

CIFAR10(root[, train, transform,...]) CIFART0 Dataset.

CS 195: Computer Vision (Dr Alimoor Reza)

Fine-tuning AlexNet on an Arbitrary Dataset

« This dataset is organized into 'train’ and ‘test’ folders as follows:

4 uws_v1_partial
| SEeEE | | R |

test

train

< test < train

Name Name

> B Crocodile > 7 Crocodile

> 5 Dolphin > B Dolphin

> £ Octopus > 7 Octopus

> [Otter >) Otter

> 7 Penguin > 7 Penguin

> 7 Polar_bear > B Polar_bear

> Squid > Squid

> [Star_fish > B Star_fish

>) Turtle > 5 Turtle

> Whale > 55 Whale

CS 195: Computer Vision (Dr Alimoor Reza)

Fine-tuning AlexNet on an Arbitrary Dataset

« Each folder (‘train’ and ‘test) contains a set of images that will be
used by our model during fine-tuning and testing, respectively

< uws_v1_partial
— —
{ |l
< Penguin 88 =
4 test < train

Name Name
> B Crocodile > 9 Crocodile
> B3 Dolphin > B9 Dolphin
> B9 Octopus > @9 Octopus Penguin_1.png Penguin_2.png Penguin_3.png
> [Otter > £ Otter
> [Penguin > B3 Penguin ﬁ
> [Polar_bear > I Polar_bear ™ R
> B9 Squid > B9 Squid — N
> [Star_fish > B Star_fish b
> B Turtle > B Turtle
> 5 Whale > 5 Whale

Penguin_9.png Penguin_10.png Penguin_11.png

CS 195: Computer Vision (Dr Alimoor Reza)

Existing Dataset in PyTorch

 |f we need to use PyTorch’s existing datasets, we can use the following
module from PyTorch to easily download and prepare the data loader for
training and tesuing.

https://pytorch.org/vision/st3mle/datasets.html# B mo% <y

Docs > Datasets

imagenet_data = torchvision.datasets.ImageNet('path/to/imagenet_root/')
data_loader = torch.utils.data.Dataloader(imagenet_data,
batch_size=4,
shuffle=True,
num_workers=args.nThreads)

« This is what we used in our previous experiment when training our own
CNN from scratch using the CIFAR-10 dataset or Fashion-MNIST dataset.

CS 195: Computer Vision (Dr Alimoor Reza)

Using Arbitrary Dataset

» Instead, when we need to use an arbitrary dataset, we can use the
following module from PyTorch to prepare the data loader for training
and testi

TEST_IMAGE_SI ZE
TEST_IMAGE_S
mean, std

print(f"ImageN

227

227
get_imagenet_mean_std_normalized()
: mean: {mean}, std: {std}")

W
_H

CNN architectu
You need to nor
transform = transf
transforms.Resi
transforms.ToTen

such as AlexNet, VGGNet, and ResNet has been pre-trained using the ImageNet dataset.

lize each image with the given mean and standard deviation before doing the forward-pass on these networks.
s.Compose([

((TEST_IMAGE_SIZE_W, TEST_IMAGE_SIZE_H)),

1)

train_dir
test_dir

nn
(=8
i
-
<
m
~
x
<
o
=
[N
<
m
~
0
w
Y
(Y]
lU‘
-h
(V]
p=r]
~
N
S
s
(o]
P
Q
wn
wn
-
-h
-
0
Q
+
[N
o
=
~
Qo
Q
+
Q
w0
m
+
w0
~
c
£
wn
|
<
IH
©
Q
=
+
[N
[+1]
=]
~
+
m
wn
+

train_dataset
test_dataset

datasets.ImageFolder(train_dir, transform=transform)
datasets.ImageFolder(test_dir, transform=transform)

len(train_dataset)
len(test_dataset)

N_train
N_test

number_of_classes = 10

print("Number of classes: ", number_of_classes)
print("Size of train set:", N_train)
print("Size of test set:", N_test)

train_dataloader
test_dataloader

DatalLoader(train_dataset, batch_size=batch_size_val, shuffle=True)
DatalLoader(test_dataset, batch_size=batch_size_val, shuffle=False)

n

CS 195: Computer Vision (Dr Alimoor Reza)

Loading a Pre-trained AlexNet Model in PyTorch

e Import a pre-trained instance of AlexNet inside our Network class and make
any other necessary changes as follows:

class AlexNet(nn.Module):
def __init__ (self, num_classes, pretrained=True):
super(AlexNet, self)._ _init_ ()

download PyTorch's own implementation of AlexNet model trained on Im:
net = models.alexnet(pretrained=True)

retained weightes for convolutional, pooling, linear layers from Ale>
self.features = net.features

self.avgpool = net.avgpool

self.classifier = net.classifier

IMPORTANT: "If you need to fine-tune this network for your own datase
the simplest modification is to replace the last layer in self.class!
the updated AlexNet has the desired number of output classes: 'num_cl
self.classifier[-1] = nn.Linear(4096, num_classes) # only this last lay

def forward(self, x):

print("shape of input: ", x.shape)

x = self.features(x)

print("output shape (self.features): ", x.shape)

x = self.avgpool(x)

print("output shape (self.avgpool): ", x.shape)

x = torch.flatten(x, 1)

x = self.classifier(x)

print("output shape (self.classifier): ", x.shape)
return x

CS 195: Computer Vision (Dr Alimoor Reza)

Fine-tuning AlexNet on an Arbitrary Dataset

e Go to Blackboard and follow the notebook as shown below:

CS 195: Computer Vision (Dr Alimoor Reza)

