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CNN: A Composition of Convolutional Layers

» We've talked about image data, convolutions, nonlinearity, max pooling,
and how they are related to some computer vision tasks. Let's connect the
dots

 input is an image (in this case a color image, so 3 channels—red, green, and blue)

there are several filters, not just one.

Conv2D layers with ReLU are often followed by maxpool

towards the end of the model, we switch to fully connected (Dense) layer

We have as many output nodes as we have classes to predict

Conv. Module #1 Conv. Module #2 Classification

conv2d maxpool convad maxpool fully fully
Input + RelLU + RelLU connected  connected

Reference
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https://developers.google.com/machine-learning/practica/image-classification

CNN: A Composition of Convolutional Layers

« Big idea: different kernels/filters can be used to extract specific information from the
original image

« Bigger idea: Instead of using manually made kernels for feature extraction, through deep
CNNs we can learn these kernel values (just like the weights of a traditional NN). These
kernels can extract latent features

 In MLP the way we learn is by changing the weights
« In CNNs, the way we learn is by changing the values in the filters/kernels

Conv. Module #1 Conv. Module #2 Classification

convad maxpool convad maxpool fully fully
Input + RelLU + RelLU connected  connected
Reference
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https://developers.google.com/machine-learning/practica/image-classification

Convolutional Neural Network (CNN)

» Stack multiple stages of feature extractors
» Higher stages compute more global, more invariant features
e Linear layer (just like an MLP) at the end for the final classification

Conv. Module #1 Conv. Module #2 Classification

conv2d maxpool conv2d maxpool fully fully
Input + RelLU + RelLU connected_  connected

- Linear layer
- Fully connected layer
- Inner-product layer

Many names but they refer to the same thing
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Today’s Agenda

e Popular CNNs

e LeNet
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Popular CNN: LeNet

e LeNet is a simple CNN architecture suitable for well-structured image
. e.g., 28x28 pixels image of digits from 0 to 9 in MNIST or our Fashion-MNIST dataset

MNIST sample image MNIST sample image MNIST sample image MNIST sample image
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CNNs Success on Simpler Datasets

8 itz 111 o
« Handwritten text/digits <l 2NE
e MNIST (0.17% error [Ciresan et al. 2011] IMW.III

Arabic & Chinese [Ciresan et al. 2012]

 Simpler recognition benchmarks
CIFAR-10 (9.3% error [Wan et al. 2013])
Traffic sign recognition

e Until 2011, it was less good at more complex datasets
Caltech-101/256 (few training examples)
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LeNet insufficient for real-world images

e LeNet is a simple CNN architecture suitable for well-structured image
. e.g., 28x28 pixels image of digits from 0 to 9 in MNIST or our Fashion-MNIST dataset

MNIST sample image MNIST sample image MNIST sample image MNIST sample image
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» Real-world images are much more complicated; pose challenges in
classification
. e.g., high resolution images 600x480 pixels image and contents have a lot more diversity
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ImageNet Challenge

ImageNet dataset

* 14 million labeled images
. 20K classes IMAGENET
<= A e .

T

Data source
* Images gathered from Internet

Image annotators
* Human labels via Amazon Turk

Project led by Fei-Fei Li at Stanford
CVPR 2009

What is ImageNet challenge
« Train your network with a subset of 1.2 million training images from ImageNet
» Test your network using another testing subset where you need to classify each
image to one of the 1000 classes
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ImageNet Challenge

() imagenet_1000_classes_label_map = \

{0: 'tench, Tinca tinca',
1: 'goldfish, Carassius auratus',
2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias’,
3: 'tiger shark, Galeocerdo cuvieri',
4: 'hammerhead, hammerhead shark',
5: 'electric ray, crampfish, numbfish, torpedo',
6: 'stingray’,
7: 'cock',
8: 'hen',
9: 'ostrich, Struthio camelus',
10: 'brambling, Fringilla montifringilla'J
11: 'goldfinch, Carduelis carduelis’',
12: 'house finch, linnet, Carpodacus mexicanus',
13: 'junco, snowbird',
14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea',
15: 'robin, American robin, Turdus migratorius',
16: 'bulbul’,
17: 'jay',
18: 'magpie',
19: ‘'chickadee',
20: 'water ouzel, dipper',

Project led by Fei-Fei Li at Stanford
CVPR 2009
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ImageNet Challenge 2012

Imagenet classification with deep convolutional neural networks
A Krizhevsky, | Sutskever... - Advances in neural ..., 2012 - proceedings.neurips.cc

... a large, deep convolutional neural network to classify the 1.2 million high-resolution images
in the ImageNet ... The.ns natwork, which has 60 million parameters and 650,000 neurons, ...
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SuperVision INRIA Amsterdam

AlexNet (Krizhevsky et al.) -- 16.4% error (top-5)
Next best (non-convnet) — 26.2% error
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Popular CNN: AlexNet

» AlexNet’s important features. Similar framework to LeNet with important
distinction such as:

Bigger model compared to LeNet

5 convolution layers + 3 linear layers
60,000,000 params

Trained on more data

106 images (ImageNet) vs. 103 images (digit imag

GPU implementation (50x speedup over CPU)

trained on two GPUs for a week

Better regularization for training

introduced a new technique called Dropout

ImageNet Classification with Deep Convolutional

Neural Networks
Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto

kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

Dropout: randomly turning off neurons from the network

A. Krizhevsky, |. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012
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http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

« AlexNet’s important features:

Dropout

"‘YY

Better regularization during training a neural network:
* introduced a new technique called Dropout
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*  Dropout: randomly set output of a hidden unit to zero Without Dropout

with a probability p

After Dropout

* Dropped out unit has no contribution in forward of |
backward passes [

Choosing dropout rate:
« p: probability of retaining a unit (range 0.5-0.8)
* n: number of hidden units
« smaller p leads to under-fitting
« large p may lead to overfitting
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A. Krizhevsky, |. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012
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http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

AlexNet Network Architecture (PyTorch Library's implementation)

227 (height H) 13

S~ /|56 27 \
227 (weight W) | / - — — |
|/ 56 | / 13
64 64 192 T . | ,27 192
o 13
3 (channel C) convad maxpool2d convad maxpool2d
64 filters 64 filters 192 filters 192 filters
shape=11x11 shape=3x3 shape=5x5 shape=3x3
stride=4 stride=2 stride=1 stride=2
pad=2 pad=0 pad=2 pad=0
384 < ) 256 256 T — )
V13 ‘\.13
conv2d conv2d convad -
384 filters 256 filters 256 filters
shape=3x3 shape=3x3 shape=3x3
stride=1 stride=1 stride=1
pad=1 pad=1 pad=1

= = = o =

O == OO0

6
256 6
6 256 A
maxpool2d . .
256 filters avgpool2d linear layer linear layer linear layer
shape=3x3 256 filters 4096 neurons 4096 neurons C 1000 neurons
stride=2 with fixed
pad=0 output size 6x6

A. Krizhevsky, |. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012
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http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Popular CNN: AlexNet

[torch.Size([3, 227, 227]1)] INPUT

[torch.Size([64, 56, 56]1)] CONV1: 64 convolutional filters each with a shape=11x11, stride=4, pad=2
[torch.Size([64, 27, 27])] MAX POOL1: 3x3 max pooling filters with stride=2, pad=0
[torch.Size([192, 27, 27])] CONV2: 192 convolutional filters each with a shape=5x5, stride=1, pad=2
[torch.Size([192, 13, 13])] MAX POOL2: 3x3 max pooling filters with stride=2, pad=0
[torch.Size([384, 13, 13])] CONV3: 384 convolutional filters each with a shape=3x3, stride=1, pad=1
[torch.Size([256, 13, 13])] CONV4: 256 convolutional filters each with a shape=3x3, stride=1, pad=1
[torch.Size([256, 13, 13])] CONV5: 256 convolutional filters each with a shape=3x3, stride=1, pad=1
[torch.Size([256, 6, 6])] MAX POOL3: 3x3 max pooling filters with stride=2, pad=0

[torch.Size([256, 6, 6])] AVG POOL: fixed output size [width x height]

[torch.Size([4096])] FC6: neurons

[torch.Size([4096])] FC7: neurons

[torch.Size([4])] FC8: neurons

A. Krizhevsky, |. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012
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http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Group Activity: Inference with AlexNet

https://github.com/alimoorreza/cs195-fall24-notes/blob/main/
cs195 alexnet dissection.ipynb

A. Krizhevsky, |. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012
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http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
https://github.com/alimoorreza/cs195-fall24-notes/blob/main/cs195_alexnet_dissection.ipynb
https://github.com/alimoorreza/cs195-fall24-notes/blob/main/cs195_alexnet_dissection.ipynb

Popular CNN: VGG-16

« VGG-16 was the winner of ImageNet (1000-class image
classification) challenge in 2014
e proposed by Andrew Zisserman's group in Oxford University
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Karen Simonyan and Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2014
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https://arxiv.org/abs/1409.1556

Popular CNN: VGG-16

e VGG-16’s important features. VGG was the winner of ImageNet challenge in

2014:

« Bigger model compared to AlexNet
« vgg16: 13 convolutional layers + 3 linear layers
* vgg19: 16 convolutional layers + 3 linear layers
« last 3 linear layers are the same as AlexNet
« approximately 140,000,000 params

» Stacking 3x3 convolution filters:
« fixed 3x3 convolution filters but many of them
«  within a sublayer, multiple 3x3 convolution filters are
stacked together
« stacking them together reduces the number of
parameters needed to cover similar fields of view
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Published as a conference paper at ICLR 2015

VERY DEEP CONVOLUTIONAL NETWORKS
FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan* & Andrew Zisserman*
Visual Geometry Group, Department of Engineering Science, University of Oxford
{karen,az}@robots.ox.ac.uk

ABSTRACT

In this work we investigate the effect of the convolutional network depth on its
accuracy in the large-scale image recognition setting. Our main contribution is
a thorough evaluation of networks of increasing depth using an architecture with
very small (3 x 3) convolution filters, which shows that a significant improvement
on the prior-art configurations can be achieved by pushing the depth to 16-19
weight layers. These findings were the basis of our ImageNet Challenge 2014
submission, where our team secured the first and the second places in the localisa-
tion and classification tracks respectively. We also show that our representations
generalise well to other datasets, where they achieve state-of-the-art results. We
have made our two best-performing ConvNet models publicly available to facili-
tate further research on the use of deep visual representations in computer vision.

Karen Simonyan and Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015
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https://arxiv.org/abs/1409.1556
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[torch.Size([3, 227, 227])]

Popular CNN: VGG-16

INPUT

[torch.Size([64, 227, 227])] CONV1_1: 64 convolutional filters each with a shape=3x3, stride=1, pad=1
[torch.Size([64, 227, 227])] CONV1_2: 64 convolutional filters each with a shape=3x3, stride=1, pad=1
[torch.Size([64, 113, 113])] MAX POOL1l: 2x2 max pooling filters with stride=2, pad=0

[torch.Size([128,
[torch.Size([128,
[torch.Size([128,
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28])1]
14])1]
14])1]
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14])1
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CONV3_3: 256 convolutional
MAX POOL3: 2x2 max pooling
CONV4_1: 512 convolutional
CONV4_2: 512 convolutional
CONV4_3: 512 convolutional
MAX POOL4: 2x2 max pooling
CONV5_1: 512 convolutional
CONV5_2: 512 convolutional
CONV5_3: 512 convolutional

[torch.Size([4096]1)] FC6: neurons
[torch.Size([4096])] FC7: neurons
[torch.Size([1000])] FC8: neurons
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7, 71)]1 MAX POOL5: 2x2 max pooling filters with stride=2, pad=0
7, 71)]1 AVG POOL: fixed output size [width x height]
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113, 113])] CONV2_2: 128 convolutional filters each with a shape=3x3, stride=1, pad=1
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FC 1000

FC 4096
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3x3 conv, 64

Input

VGG16

Karen Simonyan and Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2014
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https://arxiv.org/abs/1409.1556

Group Activity: Inference with VGG-16

https://github.com/alimoorreza/cs195-fall24-notes/blob/main/
cs195 veg16 dissection.ipynb

Karen Simonyan and Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015
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https://github.com/alimoorreza/cs195-fall24-notes/blob/main/cs195_vgg16_dissection.ipynb
https://github.com/alimoorreza/cs195-fall24-notes/blob/main/cs195_vgg16_dissection.ipynb

Popular CNN: ResNet

« ResNet was the winner of ImageNet challenge in 2015
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- Residual connections
- Skip connections

Many names but they refer to the same thing

Kaiming He et al., Deep Residual Learning for Image Recognition, CVPR 2015
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https://arxiv.org/pdf/1512.03385

ResNet’s Main Innovation:
Residual Block

T relu

F(x) + x

X PyTorch
implementation calls it
Residual block Bottleneck Layer

Kaiming He et al., Deep Residual Learning for Image Recognition, CVPR 2015

X

F(x) identity

| relu
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ResNet’s Main Innovation:

Residual Block
<[ Check out the notebook

for details
layer name | output size 18-layer | 34-layer | 50-layer 101-layer | 152-1ayer
convl 112x112 Tx7, 64, stride 2
3 %3 max pool, stride 2
1x1,64 ] [ 1x1,64 ] [ 1x1,64 ]
56x56 ’ ’ ’
Layer1 . [ e ]x2 [ o ]x3 3x3,64 | x3 3x3,64 | x3 3x3,64 | x3
’ ’ | 1x1,256 | | 1x1,256 | | 1x1,256 |
- - - - [ 1x1,128 ] [ 1x1,128 ] [ 1x1,128 ]
Layer2 | 28x2s g:g 32 X2 gi; };g x4 | | 3x3,128 | x4 3x3, 128 | x4 3x3, 128 | x8
. e : 0 | Ix1,512 | | 1x1,512 | | 1x1,512 |
. - - - 1x1,256 ] 1x1,256 ] 1x1,256 ]
Layer3 | 14x14 ;:g ;gg x2 gi; ;gg x6 | | 3x3,256 |x6 || 3x3,256 |x23 || 3x3,256 |x36
: e . e | 1x1,1024 | 1x1,1024 | 1x1,1024 |
. - - - [ 1x1,512 ] 1x1,512 1x1,512
Layer4 | 7x7 giggg X2 2:323 x3 || 3x3,512 [x3 || 3x3,512 |x3 3x3,512 | x3
: U . o | 1x1,2048 | 1x1,2048 1x1, 2048
Ix1 average pool, 1000-d fc, softmax
FLOPs 1.8%x10° 3.6x10° 3.8x10° | 7.6x10° | 11.3x10°

Kaiming He et al., Deep Residual Learning for Image Recognition, CVPR 2015
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https://arxiv.org/pdf/1512.03385

ResNet: Network Architecture

class ResNet152(nn.Module):
def __init__ (self, num_classes, pretrained=True):
super(ResNet152, self).__init__ ()
if pretrained:
net = models.resnetl152(pretrained=True)

num_features = net.fc.in_features
net.fc = nn.Linear(num_features, num_classes)

self.convl = net.convl
self.bnl = net.bnl
self.relu = net.relu
self.maxpool = net.maxpool

self.layerl = net.layerl
self.layer2 = net.layer2
self.layer3 = net.layer3
self.layer4 = net.layer4

self.avgpool = net.avgpool
self.fc = net.fc
#pdb.set_trace()

def forward(self, x):

x = self.convl(x)

x = self.bnl(x)

x = self.relu(x)

x = self.maxpool(x)
x = self.layerl(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layerd(x)
x = self.avgpool(x)
X = torch.flatten(x, 1)
x = self.fc(x)
return x
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Group Activity: Inference with ResNet

https://github.com/alimoorreza/cs195-fall24-notes/blob/main/
cs195 resnet dissection.ipynb

Kaiming He et al., Deep Residual Learning for Image Recognition, CVPR 2015
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https://github.com/alimoorreza/cs195-fall24-notes/blob/main/cs195_resnet_dissection.ipynb
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ImageNet Winners by the Popular CNNs

AlexNet (2012) —> VGG (2014)—> ResNet (2015)

ImageNet Classification Error (Top 5)

Error rate went
down drastically
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Popular Model Implementation on Huggingface

List of models from huggingface

Models

All model architecture families include variants with pretrained weights. There are specific model variants without
any weights, it is NOT a bug. Help training new or better weights is always appreciated.

Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723

e BEIT - https://arxiv.org/abs/2106.08254

¢ Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370

* Bottleneck Transformers - https://arxiv.org/abs/2101.11605

¢ CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239

e CoaTl (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399
* CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803

e ConvNeXt - https://arxiv.org/abs/2201.03545

e ConvNeXt-V2 - http://arxiv.org/abs/2301.00808

e ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697
* CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929

e DeiT - https://arxiv.org/abs/2012.12877

e DeiT-lll - https://arxiv.org/pdf/2204.07118.pdf

e DenseNet - https://arxiv.org/abs/1608.06993

e DLA - https://arxiv.org/abs/1707.06484

e DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629

o EdgeNeXt - https://arxiv.org/abs/2206.10589

» EfficientFormer - https://arxiv.org/abs/2206.01191

o EfficientNet (MBConvNet Family)
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