CS195: Computer Vision

Image Filtering
Convolution

September 04, 2024

Prake

UNIVERSITY

Md Alimoor Reza
Assistant Professor of Computer Science

i)rake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Convolution

e Same as cross-correlation, except that the kernel is
“flipped” (horizontally and vertically)

]-) Adapted from F. Durand
rake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Convolution

e Same as cross-correlation, except that the kernel is
“flipped” (first horizontallv and then vertically)

G = HkF
\ Convolution
Y S‘ H u U z B u,j B 2}] operation

u=—=kv=—

« Why convolution? Because, convolution operation
preserves the following mathematical properties

Commutative: AxB=B%*A
Associative: A% (B*xC)=(A*xB)*C
Distributive: A% (B+C)=(A%*B)+(A%*C)

i)rake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Example: Convolution operation is Commutative

ololofo]o AEIEERE
0|00 Ola|b|lc|O ?la|blc|?
010*0defo—?def7
0/9/0 Olg|lh|i]|O 21lglh|i]|?
H ololofo]o 2120222
F G
ololofo]o AEIEIERE
ajbjc olololo]o 2lalblc|?
dlelfl ok ool1(0o] — [2]d]e|f|?
AL ololofo]o 2lglnlil?
H ololofo]o 21202122
F G

Drake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Example: Convolution operation is Commutative

0 0 0 0 O
0 0 © 0O 1 2 3 0
010* 0O 4 5 6 0 —_—
AR 0O 7 8 9 0
H 0O 0 0O 0 0
0 0 O 0 O
1 2 3 0O 0 O 0 O
456* o 0 1 0 0 —_—
7 8 9
0O 0 O 0 O
H 0O 0 0O 0 O

CS195: Computer Vision

No need to write separate code for mean filtering

30|20 |10
60 [40 | 20
90 [60 | 30
90 [60 | 30
90 [60 | 30
60 [40 | 20
30|20 |10

Linear filters: examples

0O|0]|O0
0|10
0100
Original
Flip horizontally
first, then flip
vertically during 0 0 0
multiplication
0 1 0
0 0 0 Source: D. Lowe
Drake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Linear filters: examples

11111
11111 -
11111

Original Blur (with a mean filter)
Flip horizontally
first, then flip
1 1 1

vertically during

multiplication 1
1 1 1
Source: D. Lowe
Drake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Linear filters: examples

0|00 _
* 1|00
0100
Original Shifted left
By 1 pixel
vertically during 0 0 0
multiplication
0 0 1
0 0 0
Source: D. Lowe
Drake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Box filter

o Weight contributions are equal within the box and zero around the edges

2D visualization 2D visualization

e Mathematical form:

1 :if —-N<n<N,and —-M<m<M

0 :otherwise

hnpn,m| = {

Prake

CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)
UNIVERSITY

« Performing a convolution operation on the image using a box filter

o The contributions within the box are weighted equally, with no contribution from
the surrounding edges.

D Source: D. Forsyth
rake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Gaussian filter

o Weight contributions of neighboring pixels by proximity

0.08

0.06

1 _GE2HA
e 202

0.04 -
0.02

G, =
? 2ol

3D visualization 2D visualization Mathematical form

(top-down view)

Drake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Gaussian filter

o Weight contributions of neighboring pixels by proximity

0.003 0.013 0.022 0.013 0.003

0.013 0.059 0.097 0.059 0.013 1 _GE%+?)
0.022 0.097 0.159 0.097 0.022 Gy, = e 202
0.013 0.059 0.097 0.059 0.013 2102

0.003 0.013 0.022 0.013 0.003

2D visualization for a 5x5 filter witho =1

(top-down view)

(-2,2) (-1,2) (0,2) (1,2) (2,2)
(-2,1) (-1,1) (0,1) (1,1) (2,2)
(-2,0) (-1,0) (0,00 (1,00 (2,0)

(-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1)
(-2,-2) (-1,-2) (0,-2) (1,-2) (2,-2)

Location tuples (x,y) within the 5x5 filter

i)rake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Smoothing with a Gaussian filter

Smoothing with a Box filter

Coding activity: Gaussian Filter

i)rake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Coding activity: Gaussian Filter

Gaussian kernel (21x21):
mean=0ando=1

i)rake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Coding activity: Gaussian Filter

Gaussian kernel (21x21):
mean=0ando=5

i)rake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Coding activity: Gaussian Filter

Gaussian kernel (21x21):
mean=0and o =10

Drake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Coding activity: Gaussian Filter

-

mean=0ando=1 mean=0ando=5 mean=0and o0 =10

i)rake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Gaussian filter

e Removes “high-frequency” components from the image
(low-pass filter)

e Larger o blurs more

e Convolution with self is another Gaussian

Source: K. Grauman@UT Austin

i)rake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY

Coding activity: convolving image with
Gaussian filters

CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

A taxonomy of useful filters

Blur

e Box filter

e Gaussian

e Bilateral exponential

e Asymmetric filter: motion blur
Edges

 [1,1]

e Derivative filter

e Derivative of a Gaussian

e Oriented filters

e Gabor filter

e (Quadrature filters: phase and amplitude

e Elongated edges: filling gaps
Source: Antonio Torralba@MIT

CS195: Computer Vision

Other filtering operations

« What does blurring take away?

g
®

F ':,“y‘j A' ‘

o

& .=j:')

T
R -

o uTom

[T ‘\g

e A

: 7N
el
= e

detail

Let’s add it back:

--»l“2 —‘ e -
' origin detail

Sharpen filter

unfiltered =<

|

filtered -4

CS195: Computer Vision

Sharpen filter

before

Source: D. Lowe

CS195: Computer Vision

Assignment#1 Discussion

CS195: Computer Vision

Assignment 1: Whitening Transformation

e Task 1: Whitening Transformation

CS195: Computer Vision

Assignment 1: Whitening Transformation

Task 1: Whitening

You will be adjusting the contrast of the image. Your goal is to transform the image so that the resulting
image has a zero mean and unit variance. Denote the image as I(.) which is a 2D array of pixel values. Its
width and height are N and M pixels respectively. Also I(z,y) denotes the pixel value at 2D location (z, y).
You can compute the mean and variance of the gray-scale image I(.) as follows:

Zf:l 2321 I(z,y)
- N« M (1)

o2 = ZxN:l 234:1(1(33’ y) — p)?

NxM 2)

CS195: Computer Vision

Assignment 1: Whitening Transformation

Now, you can transform each pixel value separately using the above two computed statistics ¢ and o as
follows:

II(.’II, y) = I(z, l(/f) — (3)

Apply this Whitening Transformation on the provided input image to see how it affects. The following
figures show the effect of applying Whitening Transformation on the first-ever photograph — “View from
Window at Le Gras”.

Input “Whitening’ Transformed

CS195: Computer Vision

Lab 1: Image Transformation

e Task 2: Histogram Equalization

Before you start applying the per-pixel transformation, it would
be a good practice to visualize the histogram of the image first.
Write a few lines of python code to visualize the histogram first
(I will share the code snippets.)

CS195: Computer Vision

Histogram Visualization

import matplotlib.pyplot as plt

from PIL import Image

import numpy as np

img_pil = Image.open('/content/drive/MyDrive/cs195_fall24/low_level_vision/assignmentl/input_images/himalaya_dark.jpg"')
img_pil_array = np.asarray(img_pil)

plt.figure(figsize=(4,4)) # figure size (4 inch, 4 inch)
plt.imshow(img_pil_array, cmap='gray')
plt.title('Himalayas Dark')

img_pil_array.shape

Himalayas Dark

50
100
150
200
250
300

0 100 200 300 400

Histogram Visualization (v1)

img_pixel_vector = img_pil_array.flatten() # convert the matrix into a vector
fig, axes = plt.subplots(1, 2, figsize=(20, 5))

dense histogram

ax = axes[0]

ax.hist(img_pixel_vector, bins=255)

ax.set_xlabel('pixel values')

ax.set_ylabel('number of pixels')

ax.set_title('Histogram with 255 bins')

ax.tick_params('both', labelsize=20)

coarse histogram

ax = axes[1]

ax.hist(img_pixel_vector, edgecolor="yellow", color="brown") # default bins=10
ax.set_xlabel('pixel values')

ax.set_ylabel('number of pixels')

ax.set_title('Histogram with 10 (default) bins')

ax.tick_params('both', labelsize=20)

plt.show()
Histogram with 255 bins Histogram with 10 (default) bins
5000 50000
4000 | 40000
£3000 £ 30000
%2000_ ézoooo-
1000 10000
%9 20 40 60 80 100 o 20 40 60 80 100
o el vaes

CS195: Computer Vision

Histogram Visualization (v2

alternate way of visualizing the histogram where we have more control

histogram() function from Pillow's Image module

NOTICE: this function returns the histogram, hence we have access to the bins
we can compute normalized histogram

Step 1: generate the histogram
img_hist = img_pil.histogram() # calling Image.histogram() function from PIL

img_hist_array = np.array(img_hist)

bins = np.arange(len(img_hist_array))

fig, axes = plt.subplots(1l, 1, figsize=(12, 5))

axes.bar(bins, img_hist_array)

axes.set_title('Histogram visualization with bar function') # explicit bin value
axes.set_xlabel('pixel values')

axes.set_ylabel('number of pixels')

Histogram visualization with bar function

5000 -

4000 |

&
a8

n
o
o
(=]

number of pixels

1000 -

0 = = T T T
0 50 100 150 200 250
pixel values

CS195: Computer Vision

Assignment 1: Histogram Equalization

Task 2: Histogram Equalization

Let’s try another type of contrast transformation called Histogram FEqualization on the input image. You
may need to do it in multiple steps.

Step 1: you need to generate the histogram of intensity values. The simplest way to find the histogram of
intensity values is to make use of the Pillow Library functionalities (HINT: There is a function called
‘histogram()’ in Pillow). Alternatively, if you want, you could write few lines of python code and build your
own histogram of intensity values. There will be at most 255 intensity values. Let’s denote hist;, is 1D vector
denoting the histogram of intensity values. b denotes a particular bin, and its value ranges from 0 to 255.
Now, count how many pixels in image /(.) have the intensity value equal to b. Put that total count into the
respective bin location, i.e., hist,. You can do it for all the intensity values one after another, starting from
b =0 up until b = 255.

Step 2: Now you need to normalize the histogram hist such that the sum of this new histogram is equal
- - - ’ - -
to 255. Denote this new histogram as hist . For each bin b, you can compute it as follows:

’ hiStb
hist, = 4
T N«M @
hz’st; = hist; * 255 (5)

CS195: Computer Vision

number of pixels

Assignment 1: Histogram Equalization

Step 2: Now you need to normalize the histogram hist such that the sum of this new histogram is equal
- - - ’ . .
to 255. Denote this new histogram as hist . For each bin b, you can compute it as follows:

’ h,istb
hist, = 4
LLSTy, N n j‘[()
hist; = hist; * 255 (5)
Unnormalized histogram normalized histogram
5000 A
7_
4000 - 6 -
3000 1 -
=
2000 1 g 34
2-
1000 -
1_
0- 0

100 150 200
bin values

0 50 100

CS195: Computer Vision

250

Assignment 1: Histogram Equalization

Step 3: Compute the cumulative sum of the hist . Denote this histogram as histcum.

normalized histogram

0 50 100 150 200 250
bin values

cumulative sum histogram

250 A

200 A

150 +

cummulative bin count

0 50 100 150 200 250

Assignment 1: Histogram Equalization

Step 4: Use the cumulative histogram histcum as a lookup table to transform the value of each pixel
location as follows:

I (z,y) = histcum(I(z,y)) (6)
where ['(;1:,y) denotes the histogram equalized image value at pixel location (z,y). Apply your newly
implemented Histogram FEqualization on the provided input image to see how it affects. The following
figures show the result on another input image called “Himalaya”.

Input Histogram Equalized

CS195: Computer Vision

