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Convolution

e Same as cross-correlation, except that the kernel is
“flipped” (horizontally and vertically)

]-) Adapted from F. Durand
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Convolution

e Same as cross-correlation, except that the kernel is
“flipped” (first horizontallv and then vertically)

G = HkF
\ Convolution
Y S‘ H u U z B u,j B 2}] operation

u=—=kv=—

« Why convolution? Because, convolution operation
preserves the following mathematical properties

Commutative: AxB=B%*A
Associative: A% (B*xC)=(A*xB)*C
Distributive: A% (B+C)=(A%*B)+(A%*C)
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Example: Convolution operation is Commutative
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Example: Convolution operation is Commutative
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No need to write separate code for mean filtering
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Linear filters: examples

0O|0]|O0
0|10
0100
Original
Flip horizontally
first, then flip
vertically during 0 0 0
multiplication
0 1 0
0 0 0 Source: D. Lowe
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Linear filters: examples

11111
11111 -
11111

Original Blur (with a mean filter)
Flip horizontally
first, then flip
1 1 1

vertically during

multiplication 1
1 1 1
Source: D. Lowe
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Linear filters: examples

0|00 _
* 1|00
0100
Original Shifted left
By 1 pixel
vertically during 0 0 0
multiplication
0 0 1
0 0 0
Source: D. Lowe
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Box filter

o Weight contributions are equal within the box and zero around the edges

2D visualization 2D visualization

e Mathematical form:

1 :if —-N<n<N,and —-M<m<M

0 :otherwise

hnpn,m| = {
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« Performing a convolution operation on the image using a box filter

o The contributions within the box are weighted equally, with no contribution from
the surrounding edges.

D Source: D. Forsyth
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Gaussian filter

o Weight contributions of neighboring pixels by proximity
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3D visualization 2D visualization Mathematical form

(top-down view)
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Gaussian filter

o Weight contributions of neighboring pixels by proximity

0.003 0.013 0.022 0.013 0.003
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2D visualization for a 5x5 filter witho =1

(top-down view)

(-2,2) (-1,2) (0,2) (1,2) (2,2)
(-2,1) (-1,1) (0,1) (1,1) (2,2)
(-2,0) (-1,0) (0,00 (1,00 (2,0)

(-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1)
(-2,-2) (-1,-2) (0,-2) (1,-2) (2,-2)

Location tuples (x,y) within the 5x5 filter
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Smoothing with a Gaussian filter




Smoothing with a Box filter




Coding activity: Gaussian Filter
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Coding activity: Gaussian Filter

Gaussian kernel (21x21):
mean=0ando=1
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Coding activity: Gaussian Filter

Gaussian kernel (21x21):
mean=0ando=5
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Coding activity: Gaussian Filter

Gaussian kernel (21x21):
mean=0and o =10

Drake CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

UNIVERSITY




Coding activity: Gaussian Filter

-

mean=0ando=1 mean=0ando=5 mean=0and o0 =10
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Gaussian filter

e Removes “high-frequency” components from the image
(low-pass filter)

e Larger o blurs more

e Convolution with self is another Gaussian

Source: K. Grauman@UT Austin
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Coding activity: convolving image with
Gaussian filters
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A taxonomy of useful filters

Blur

e Box filter

e Gaussian

e Bilateral exponential

e Asymmetric filter: motion blur
Edges

 [1,1]

e Derivative filter

e Derivative of a Gaussian

e Oriented filters

e Gabor filter

e (Quadrature filters: phase and amplitude

e Elongated edges: filling gaps
Source: Antonio Torralba@MIT
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Other filtering operations

« What does blurring take away?
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Let’s add it back:
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Sharpen filter

unfiltered =<

|

filtered -4
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Sharpen filter

before

Source: D. Lowe
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Assignment#1 Discussion
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Assignment 1: Whitening Transformation

e Task 1: Whitening Transformation
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Assignment 1: Whitening Transformation

Task 1: Whitening

You will be adjusting the contrast of the image. Your goal is to transform the image so that the resulting
image has a zero mean and unit variance. Denote the image as I(.) which is a 2D array of pixel values. Its
width and height are N and M pixels respectively. Also I(z,y) denotes the pixel value at 2D location (z, y).
You can compute the mean and variance of the gray-scale image I(.) as follows:

Zf:l 2321 I(z,y)
- N« M (1)

o2 = ZxN:l 234:1(1(33’ y) — p)?

NxM 2)
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Assignment 1: Whitening Transformation

Now, you can transform each pixel value separately using the above two computed statistics ¢ and o as
follows:

II(.’II, y) = I(z, l(/f) — (3)

Apply this Whitening Transformation on the provided input image to see how it affects. The following
figures show the effect of applying Whitening Transformation on the first-ever photograph — “View from
Window at Le Gras”.

Input “Whitening’ Transformed
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Lab 1: Image Transformation

e Task 2: Histogram Equalization

Before you start applying the per-pixel transformation, it would
be a good practice to visualize the histogram of the image first.
Write a few lines of python code to visualize the histogram first
(I will share the code snippets.)
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Histogram Visualization

import matplotlib.pyplot as plt

from PIL import Image

import numpy as np

img_pil = Image.open('/content/drive/MyDrive/cs195_fall24/low_level_vision/assignmentl/input_images/himalaya_dark.jpg"')
img_pil_array = np.asarray(img_pil)

plt.figure(figsize=(4,4)) # figure size (4 inch, 4 inch)
plt.imshow(img_pil_array, cmap='gray')
plt.title('Himalayas Dark')

img_pil_array.shape

Himalayas Dark

50
100
150
200
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300
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Histogram Visualization (v1)

img_pixel_vector = img_pil_array.flatten() # convert the matrix into a vector
fig, axes = plt.subplots(1, 2, figsize=(20, 5))

# dense histogram

ax = axes[0]

ax.hist(img_pixel_vector, bins=255)

ax.set_xlabel('pixel values')

ax.set_ylabel('number of pixels')

ax.set_title('Histogram with 255 bins')

ax.tick_params('both', labelsize=20)

# coarse histogram

ax = axes[1]

ax.hist(img_pixel_vector, edgecolor="yellow", color="brown") # default bins=10
ax.set_xlabel('pixel values')

ax.set_ylabel('number of pixels')

ax.set_title('Histogram with 10 (default) bins')

ax.tick_params('both', labelsize=20)

plt.show()
Histogram with 255 bins Histogram with 10 (default) bins
5000 50000
4000 | 40000
£3000 £ 30000
%2000_ ézoooo-
1000 10000
%9 20 40 60 80 100 o 20 40 60 80 100
o el vaes
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Histogram Visualization (v2

# alternate way of visualizing the histogram where we have more control

# histogram() function from Pillow's Image module

# NOTICE: this function returns the histogram, hence we have access to the bins
# we can compute normalized histogram

# Step 1: generate the histogram
img_hist = img_pil.histogram() # calling Image.histogram() function from PIL

img_hist_array = np.array(img_hist)

bins = np.arange(len(img_hist_array))

fig, axes = plt.subplots(1l, 1, figsize=(12, 5))

axes.bar(bins, img_hist_array)

axes.set_title('Histogram visualization with bar function') # explicit bin value
axes.set_xlabel('pixel values')

axes.set_ylabel('number of pixels')

Histogram visualization with bar function
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Assignment 1: Histogram Equalization

Task 2: Histogram Equalization

Let’s try another type of contrast transformation called Histogram FEqualization on the input image. You
may need to do it in multiple steps.

Step 1: you need to generate the histogram of intensity values. The simplest way to find the histogram of
intensity values is to make use of the Pillow Library functionalities (HINT: There is a function called
‘histogram()’ in Pillow). Alternatively, if you want, you could write few lines of python code and build your
own histogram of intensity values. There will be at most 255 intensity values. Let’s denote hist;, is 1D vector
denoting the histogram of intensity values. b denotes a particular bin, and its value ranges from 0 to 255.
Now, count how many pixels in image /(.) have the intensity value equal to b. Put that total count into the
respective bin location, i.e., hist,. You can do it for all the intensity values one after another, starting from
b =0 up until b = 255.

Step 2: Now you need to normalize the histogram hist such that the sum of this new histogram is equal
- - - ’ - -
to 255. Denote this new histogram as hist . For each bin b, you can compute it as follows:

’ hiStb
hist, = 4
T N«M @
hz’st; = hist; * 255 (5)
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number of pixels

Assignment 1: Histogram Equalization

Step 2: Now you need to normalize the histogram hist such that the sum of this new histogram is equal
- - - ’ . .
to 255. Denote this new histogram as hist . For each bin b, you can compute it as follows:

’ h,istb
hist, = 4
LLSTy, N n j‘[ ( )
hist; = hist; * 255 (5)
Unnormalized histogram normalized histogram
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Assignment 1: Histogram Equalization

Step 3: Compute the cumulative sum of the hist . Denote this histogram as histcum.

normalized histogram

0 50 100 150 200 250
bin values

cumulative sum histogram

250 A

200 A

150 +

cummulative bin count
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Assignment 1: Histogram Equalization

Step 4: Use the cumulative histogram histcum as a lookup table to transform the value of each pixel
location as follows:

I (z,y) = histcum(I(z,y)) (6)
where [ '(;1:,y) denotes the histogram equalized image value at pixel location (z,y). Apply your newly
implemented Histogram FEqualization on the provided input image to see how it affects. The following
figures show the result on another input image called “Himalaya”.

Input Histogram Equalized

CS195: Computer Vision



