
CS195: Computer Vision

1

Md Alimoor Reza

Assistant Professor of Computer Science 

CS 195: Computer Vision (Dr Alimoor Reza)

Image Transformation (part 2)

Parametric Warping

December, 2nd, 2024



CS 167: Machine Learning (Dr Alimoor Reza)

Announcement

• Starting on December 1st, there will be a puzzle released daily. They 
typically increase in difficulty, but the first few days are typically pretty 
fun and easy.



Recap: Parametric (global) warping

	 Transformation T is a coordinate-changing machine:

	 	 	 	     p’ = T(p)

	 

	 What does it mean that T is global?


– Is the same for any point p

– can be described by just a few numbers (parameters)


	 

	 For linear transformations, we can represent T as a matrix

	 	 	 	         p’ = Mp

T

p = (x,y) p’ = (x’,y’)
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Recap: Parametric (global) warping
Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical
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Recap: Group Activity#6
	 Find the transformed coordinates with given 

2x2 transformation matrix

Only linear 2D transformations can be represented with a 2x2 matrix
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2x2 Matrices
	 What types of transformations can be represented 

with a 2x2 matrix besides: 

Can we represent 2D Translation with a 2x2 matrix from 
the following equation?
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Only linear 2D transformations 

can be represented with a 2x2 matrix
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x

y

rotation, scaling, shear, reflection



2x2 Matrices

NO!
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	 What types of transformations can be 
represented with a 2x2 matrix besides: 

Can we represent 2D Translation with a 2x2 matrix from 
the following equation?
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Solution: Homogeneous Coordinates
• How can we represent translation as a matrix? 

• Homogeneous coordinates

– Embed 2-d coordinates 3-d space
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Homogeneous Coordinates
• Embed in higher-dimensional space

– (x, y, w) represents a point at 2D location (x/w, y/w)

– (x, y, 0) represents a point at infinity

– (0, 0, 0) is not allowed

1 2

1

2
(2,1,1) or (4,2,2) or (6,3,3)…

x

y
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Homogeneous Coordinates
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Homogeneous Coordinates
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Fig. Bird-eye view or 
viewing from the top

Fig. Viewing from the side
- In order to see the 2D translation, 

we need to observe the top surface 
from a top-down perspective on the 
x-y plane.



Homogeneous Coordinates
• How can we represent translation as matrix? 

• Use a 3x3 transformation matrix, T

– Translation corresponds to last column of matrix

12

€ 

T =

1 0 tx
0 1 ty
0 0 1
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Translation
• Example of translation in homogeneous coordinates
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Matrix Vector
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Homogeneous 2D Transformations
• Basic 2D transformations (others including 2D translation) as 3x3 matrices
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Matrix Vector

Matrix Vector

Matrix Vector

Matrix Vector

Numbers can be placed 
in the first 6 entries of each 

matrix. However, they cannot be 
placed in the bottom-left two 

entries.
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Affine Transformations
• Affine transformations are combinations of linear 

transformations (rotation, scaling, shear, mirror) and translations


• Properties of affine transformations:

– Origin does not necessarily map to origin

– Lines map to lines

– Parallel lines remain parallel

– Ratios are preserved

– Closed under composition

– Models change of basis

– Maps triangles to triangles
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Affine transformation: 
when any combination of 
numbers can be placed in the 

first six entries of a matrix



• Projective transformations are combinations of affine 
transformations and projective warps 


• Properties of projective transformations:

– Origin does not necessarily map to origin

– Lines map to lines

– Parallel lines do not necessarily remain parallel

– Ratios are not preserved

– Closed under composition

– Models change of basis

– Maps any quadrilateral to any quadrilateral
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Projective Transformations
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Projective transformation: when any 
combination of numbers can be placed in 

all 9 entries of a matrix



Projective Transformations

Called a homography 

(or planar perspective map)
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Image warping with homographies

image plane in front image plane below
black area

where no pixel

maps to
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2D image transformations

These transformations are a nested set of groups

• Closed under composition and inverse is a member
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Recovering Transformations

• What if we know f and g and want to 
recover the transform T?

x x’

T(x,y)
y y’

f(x,y) g(x’,y’)

?
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Translation: # correspondences?

• How many Degrees of Freedom?

• How many correspondences needed for translation?

• What is the transformation matrix?

x x’

T(x,y)
y y’

?
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Euclidean: # correspondences?

• How many DOF?

• How many correspondences needed for 

translation+rotation?

x x’

T(x,y)
y y’

?

22

 
t_x

t_y

CS 195: Computer Vision (Dr Alimoor Reza)



Affine: # correspondences?

• How many DOF?

• How many correspondences needed for affine?

x x’

T(x,y)
y y’

?
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Projective: # correspondences?

• How many DOF?

• How many correspondences needed for projective?

x x’

T(x,y)
y y’

?
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Image alignment

• Given two images, how do we compute the transformation that 
aligns them?

– Answer: use feature matching

?
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Feature-based alignment

What about the bad matches?

Each matching feature gives us an independent 
estimate of the translation vector


How do we combine these together?
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RAndom SAmple Consensus

Select one match at random, count inliers
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RAndom SAmple Consensus

Select another match at random, count inliers
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RAndom SAmple Consensus

Output the translation with the highest number of inliers
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