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Recap: Generative Model

• Image generation: generate new image after training from a given image dataset 

• Generative modeling can be used on many downstream tasks and 
applications
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GAN-based Diffusion-based

Diffusion Models Beat GANs on Image Synthesis - arxiv'21

https://arxiv.org/pdf/2105.05233


Recap: Generative Model

• Generative modeling have achieved state-of-the-art performance on many 
downstream tasks and applications.
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• Shape generation: generate shapes from 3D point-cloud 

Learning Gradient Fields for Shape Generation - ECCV'20

https://github.com/RuojinCai/ShapeGF


Recap: Generative Model
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• Audio synthesis: generate audio that sounds realistic 

• Generative modeling can be used on many downstream tasks and 
applications

DiffWave: A Versatile Diffusion Model for Audio Synthesis - ICML'21

• Music generation: generate new music 

Symbolic Music Generation with Diffusion Models

https://arxiv.org/pdf/2105.05233
https://github.com/magenta/symbolic-music-diffusion


Recap: Generative Model: Likelihood-Based Model

• Generative modeling is based on representation of probability distribution 

• Existing generative modeling techniques can be classified into two broad 
categories 
• Implicit generative models (GAN) 
• Likelihood-based models (VAE) 
• Score-based models (*diffusion process)
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• Implicit models: 
• probability distribution is represented by a model of its sampling process  

• generative Adversarial Network (GAN) is an example of implicit generative 
model. It implicitly represents a distribution over all objects that can be 
produced by the generator network

• Generative modeling is based on representation of probability distribution

• Limitations 
• requires adversarial training which is very unstable (eg, we have seen example of 

mode collapse) 
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Generative Model: Implicit Model



Generative Model: Likelihood-Based Model

• Generative modeling is based on representation of probability distribution

• Likelihood-based models: 
• directly learns the distribution’s probability density function (PDF) via 

maximum likelihood estimation method 

• Variational Autoencoder (VAE) is an example of likelihood-based 
generative model

• Limitations 
• rely on surrogate objectives to approximate maximum likelihood training  

• require strong restriction on the model architecture for tractable normalization  
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Probability Density Function (PDF) Estimation

• True probability density function (PDF): 

• We can model this true probability density function (PDF) with the 
help of a real-valued function parameterized by     :

• Data:
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normalizing constant

{x1, x2, . . . , xn}
P(x)

fθ(x)
• So the estimated probability density function (PDF)

θ

=
efθ(x)

Zθ

Unnormalized probability model

Pθ(x)Neural network



PDF Estimation using Deep Neural Network (DNN)
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= Pθ(x)
… 
… 
…

fθ(x)

e fθ(x)

e fθ(x)

Zθ

normalizing constant
x Zθ = ∫ efθ(x)dx

Computation for this term 
Is intractable for most DNN models

• Intractable normalizing constant        can be tackled using the followings:Zθ
• Approximate normalizing constant 

• VAEs do that leading to inaccurate probability distribution

• Restricting the DNN to model simpler PDF as Gaussian distribution 
• Caveat: then this restricted model will be unable to model complex data distribution

• Generative Adversarial Networks (GAN): 
• Caveat: cannot evaluate probability

• Try alternative method that does not require modeling normalizing constant

θAll the network 
weights is 
collectively:



Generative Model: Score-Based Model

• Score-based models 
• Instead of modeling probability density function (PDF), it models gradient of the log 

probability density function (log PDF)  

• Don’t require tractable normalizing constant 

• Score function of a distribution:  

• this quantity is known as stein score function 

• Score-based model:  

• this model tries to approximate gradient of the log probability density function 

• Gradient with respect to x and not with respect to 
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P(x) = ∇xlogp(x)

Sθ(x) ≈ ∇xlogp(x)

θ

gradient of the log pdf



Generative Model: Score-Based Model
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1D score function1D probability density function

= Pθ(x)
… 
… 
…

fθ(x)

e fθ(x)

e fθ(x)

Zθ

x

∇xlogpθ(x) = ∇xlog
e fθ(x)

Zθ

= ∇x fθ(x)logee − ∇xlogZθ

= ∇x fθ(x) − ∇xlogZθ

= ∇x fθ(x)

0

Derivative of constant is zeroθAll the network 
weights is 
collectively:



Generative Model: Score-Based Model

• Score vs. probability density function 

• Imagine a probability distribution of a 
mixture of two 2D Gaussians  

• probability density function (contours) and 
it’s score function (the vector field) 

• Score function:  

• it points in the direction where density 
function has fastest growth
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2D score function shown in black arrow

2D probability density function shown in red contours



Generative Model: Score-Based Model
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Figure: train a score-based model with score matching, and then produce samples via Langevin dynamics

an iterative process to draw samples 
from a trained score-based model

method that minimizes 
Fisher Divergence (FD) 
without knowledge of the 
ground-truth data score

beyond scope of cs195

beyond scope of cs195



Generative Model: Score-Based Model
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Figure: estimated scores are only accurate in high density regions. 

• Challenges: the estimated score functions are inaccurate in low density regions 

score function shown in black arrow 
Low density region High density region

Moderately high 
density region



Generative Model: Score-Based Model
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Figure: estimated scores are accurate everywhere for the noise-perturbed data distribution due to reduced low data density regions.

• Solution: bypass the difficulty of accurate score estimation in regions of low 
data density by perturbing data points with noise and train score-based 
models on the noisy data points instead.



Generative Model: Noise Conditional Score-Based Model
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Figure: apply multiple scales of Gaussian noise to perturb the data distribution (first row)
jointly estimate the score functions for all of them (second row)

• Solution:  
• perturb the data distribution in a sequence of L=(100 or 1000) Gaussian noises (alpha values in the above 

figure and in that order) 
• Like before, train score-based models on this noisy data points. 

• It is called noise conditional score-based model



Generative Model: Noise Conditional Score-Based Model
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Apply multiple scales of Gaussian noise to perturb an image distribution

α1 α2 α3 α4 α5 α6 α7

…

• Solution:  
• For example, perturb an image in a sequence of L Gaussian noises (alpha values in the above figure and in 

that order) 
• Like before, train score-based models on this noisy data points. 

• It is called noise conditional score-based model



Generative Model: Score-Based Model
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Figure: train a score-based model with score matching using noise conditional score network, and then produce samples via 
Annealed Langevin dynamics

sθ(x, i) = ∇xlogpσi
(x)

—————————

——————
——————
Annealed Langevin 
Dynamics

UNet



Generative Model: New Sample Generation
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Follow the reverse order (L step process) during inference: start with large 
Gaussian noise, modify the image according to the scores, and generate 
new sample

Figure: generate a new sample for a mixture of two Gaussian distribution. From right to left,  
generate new sample from largest noise conditioned distribution (third column),  then second 
largest noisy condition distribution (middle), and finally the smallest noise conditioned 
distribution (left)



Generative Model: New Sample Generation
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Follow the reverse order (L step process) during inference: start with large 
Gaussian noise, modify the image according to the scores, and generate 
new sample

Figure: generate a new sample for a image data distribution for CIFAR-10 dataset



Diffusion Process

• Goal: learn structure of the probability density of a dataset 
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• Recover structure by reverse time; in other words, recover the data 
distribution by: 
• starting from uniform distribution and running backward dynamics 



Diffusion Process: Algorithm

• Forward process: destroy all structure in data using diffusion process 
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• Reverse process: train a DNN model to reverse the diffusion process 

UNet



Diffusion Process: Algorithm

• Forward process: destroy all structure in data using diffusion process 
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• Reverse process: train a DNN model to reverse the diffusion process 

UNet



Diffusion Process: Algorithm

• Forward process: converts any complex data distribution into a tractable distribution  
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• Reverse process: learn a finite-time reversal of this diffusion process → 
generative model 



PyTorch Implementation: Diffusion Model

• Open the notebook on blackboard
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