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Probability Basics

• Probability Distribution
• Discrete Probabilities

• Probability distribution is a function which will depend on a random variable eg, X

• If the random variable X takes discrete values then you get discrete probabilities

• Probability Distribution and Random Variable

CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

• Continuous Probabilities

In this lecture, we are going to cover 
only distributions for discrete events; 
continuous distributions will be covered in the 

next lecture.



4

Random Number

• Random numbers are useful many applications:

• Simulating a coin toss — random flipping of head or tail
• Simulating a dice roll — random roll of one of six sides
• Simulating a card shuffling - randomly selecting cards (out of 52)

• Python provides library to generate random numbers
• You can import random module to get access to random number generating 

functions
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Probability Basics

• Let’s assume X is random variable which can take discrete values
• P(X) is a function that maps from all possible values of X to the probability of the 

corresponding event. For example:
• X is a random variable 
• The sample space is the set of possible value that X can take.
• There is probability assigned to each element of the sample space.
• Eg, X is a random variable for coin toss event, hence X can take one of the 2 values 

from the sample space {Head, Tail}

• Discrete Probability Distribution (1 dimensional event):
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P(X = Head ) = 0.75
P(X = Tail) = 0.25
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Probability Basics

• Let’s assume X is random variable which can take discrete values
• P(X) is a function that maps from all possible values of X to the probability of the 

corresponding event.
• X is a random variable which can take one of the 6 values for a standard six-sided 

die, ie, the sample space of X:  {1, 2, 3, 4, 5, 6}. 
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P(X = 1) = 0.3
P(X = 2) = 0.3
P(X = 3) = 0.1
P(X = 4) = 0.1
P(X = 5) = 0.1
P(X = 6) = 0.1

• Discrete Probability Distribution (1 dimensional event):
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Probability Basics

• What about when we have more than two random variables?
• both random variables may take discrete values. 

• Let's assume there are two random variables, X and Y, each of which can take on 
discrete values. 

• Essentially, we are transitioning from a one-dimensional probability distribution to a 
higher-dimensional space. Let’s start with a 2-dimensional probability distribution.
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• Discrete Probability Distribution (multi-dimensional event):
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Probability Basics

• Let's assume there are two random variables, X and Y, each of which can take on 
discrete values. 
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Discrete value of  
1st random variable X

Discrete value of  
1st random variable X

Discrete value of  
2nd random variable Y

Discrete value of  
2nd random variable Y

2n
d 

di
m

en
sio

n

1st dimension

• Discrete Probability Distribution (2 dimensional event):
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Probability Basics

• Let’s assume that you are planning to adopt a cat but can’t decide which breed 
and color to pick from. You were blind-folded and decided to randomly pick one 
of the following possible cats

white black

Persian

Himalayan
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• Discrete Probability Distribution (2 dimensional event):
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Probability Basics

• What is the probability that you picked
• Persian cat?
• Himalayan cat?

CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

white black

Persian

Himalayan

1st dimension

2n
d 

di
m
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sio

n

• Discrete Probability Distribution (2 dimensional event):
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Probability Basics

• X = random variable indicating color
• Y = random variable indicating breed
• What is P(X=white, Y=Persian)?
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white black

Persian

Himalayan

• Discrete Probability Distribution (2 dimensional event):
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Joint Probability Distribution

• X = random variable indicating color of the cat
• Y = random variable indicating breed of the cat

• Sample space is set of all possible outcomes of the random variable

• The full joint probability distribution assigns a probability to each 
element of the sample space

white black

Persian

Himalayan

0.08 0.02

0.01 0.98
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Joint Probability Distribution

• X = random variable indicating color of the cat
• Y = random variable indicating breed of the cat

• Sample space is set of all possible outcomes of the random variable

• The full joint probability distribution assigns a probability to each 
element of the sample space. You can also list the probabilities of the 
sample space in the format below:

X Y P(X,Y)

White Persian ?

White Himalayan ?

Black Persian ?

Black Himalayan ?
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Joint Probability Distribution
• The joint probability distribution expresses probability distribution of observing varied 

instance of (x, y) where some paired outcome occurs more frequently than others

• X = random variable with three discrete values {a, b, c}

• Y = random variable with three discrete values {       ,          ,         }

X=a X=b X=c

Y= 0.1 0.05 0.1

Y= 0.1 0.3 0.1

Y= 0.05 0.05 0.15

α
β
γ

α β γ
• The joint probability distribution P(X, Y) is expressed using the table
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Probability Basics

• Probability Distribution
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• Joint Probability Distribution

• Marginal Probability Distribution

• Conditional Probability Distribution

• Bayes Rule
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Marginal Probability Distribution
• The marginal probability distribution expresses probability distribution of any single random 

variable from a joint probability distribution by summing over all other variables

X=a X=b X=c

Y= 0.1 0.05 0.1

Y= 0.1 0.3 0.1

Y= 0.05 0.05 0.15

α
β
γ
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Marginal Probability Distribution

X=a X=b X=c

Y= 0.1 0.05 0.1

Y= 0.1 0.3 0.1

Y= 0.05 0.05 0.15

α
β
γ

• Aggregating individual marginal probability values into a histogram to make the 
probability distribution as follows:

[P(X=a), P(X=b), P(X=c)]

• Marginal distribution has the following interpretation — “It finds the probability of 
X happening regardless of Y taking any value of α β γ

CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)
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Exercise 1: Marginal Probability Distribution

X=a X=b X=c

Y= 0.1 0.05 0.1

Y= 0.1 0.3 0.1

Y= 0.05 0.05 0.15

α
β
γ

• Find the marginal distribution P(X)?
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Solution: Marginal Probability Distribution

X=a X=b X=c

Y= 0.1 0.05 0.1

Y= 0.1 0.3 0.1

Y= 0.05 0.05 0.15

α
β
γ

• Find the marginal distribution P(X=a)?
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P(X = a) = P(X = a, Y = α) + (X = a, Y = β) + (X = a, Y = γ)

= ?

Compute along 
this direction
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Solution: Marginal Probability Distribution
X=a X=b X=c

Y= 0.1 0.05 0.1

Y= 0.1 0.3 0.1

Y= 0.05 0.05 0.15

α
β
γ

• Find the marginal distribution P(X=a)?
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P(X = a) = P(X = a, Y = α) + (X = a, Y = β) + (X = a, Y = γ)

= 0.1 + (X = a, Y = β) + (X = a, Y = γ)

= 0.1 + 0.1 + (X = a, Y = γ)

= 0.1 + 0.1 + 0.05

= 0.25
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Solution: Marginal Probability Distribution

X=a X=b X=c

Y= 0.1 0.05 0.1

Y= 0.1 0.3 0.1

Y= 0.05 0.05 0.15

α
β
γ

• Find the marginal distribution P(X=b)?
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P(X = b) = P(X = b, Y = α) + (X = b, Y = β) + (X = b, Y = γ)

= ?

Compute along 
this direction
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Solution: Marginal Probability Distribution
X=a X=b X=c

Y= 0.1 0.05 0.1

Y= 0.1 0.3 0.1

Y= 0.05 0.05 0.15

α
β
γ

• Find the marginal distribution P(X=b)?
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P(X = b) = P(X = b, Y = α) + (X = b, Y = β) + (X = b, Y = γ)

= 0.05 + (X = b, Y = β) + (X = b, Y = γ)

= 0.05 + 0.3 + (X = b, Y = γ)

= 0.05 + 0.3 + 0.05
= 0.40
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Solution: Marginal Probability Distribution

X=a X=b X=c

Y= 0.1 0.05 0.1

Y= 0.1 0.3 0.1

Y= 0.05 0.05 0.15

α
β
γ

• Find the marginal distribution P(X=c)?
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P(X = c) = P(X = c, Y = α) + (X = c, Y = β) + (X = c, Y = γ)

= ?

Compute along 
this direction
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Solution: Marginal Probability Distribution
X=a X=b X=c

Y= 0.1 0.05 0.1

Y= 0.1 0.3 0.1

Y= 0.05 0.05 0.15

α
β
γ

• Find the marginal distribution P(X=c)?
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P(X = c) = P(X = c, Y = α) + (X = c, Y = β) + (X = c, Y = γ)

= 0.10 + (X = c, Y = β) + (X = c, Y = γ)

= 0.10 + 0.10 + (X = c, Y = γ)

= 0.10 + 0.10 + 0.15

= 0.35



26

Marginal Probability Distribution

• Aggregating individual marginal probability values into a histogram to make the 
probability distribution as follows:

[P(X=a), P(X=b), P(X=c)]

• Marginal distribution has the following interpretation — “It finds the probability of 
X happening regardless of Y taking any value of α β γ
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X=a X=b X=c

Y= 0.1 0.05 0.1

Y= 0.1 0.3 0.1

Y= 0.05 0.05 0.15

α
β
γ

It sums up to 1.0, which satisfies the 
property of a probability distribution.

[0.25, 0.40, 0.35]
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Exercise 2: Marginal Probability Distribution

X=a X=b X=c

Y= 0.1 0.05 0.1

Y= 0.1 0.3 0.1

Y= 0.05 0.05 0.15

α
β
γ

• Similarly, can you find the marginal distribution P(Y)?
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P(Y ) = P(X = a, Y ) + (X = b, Y ) + (X = c, Y )

P(Y = α) = ?
P(Y = β) = ?
P(Y = γ) = ?

                          

Compute along 
these directions one 

after another
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Probability Basics

• Probability Distribution
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• Joint Probability Distribution

• Marginal Probability Distribution

• Conditional Probability Distribution

• Bayes Rule
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Conditional Probability Distribution
• It tells us the relative propensity
• Conditional probability distribution of any single random variable (eg, X) conditioned on 

other variable’s (eg, Y) value fixed to a particular value
X=a X=b X=c

Y= 0.1 0.05 0.1

Y= 0.1 0.3 0.1

Y= 0.05 0.05 0.15

α
β
γ
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P(X = a |Y = α) =
P(X = a, Y = α)

P(Y = α)

We computed this 
marginal probability term 

earlier

=
P(X = a, Y = α)

P(X = a, Y = α) + P(X = b, Y = α) + P(X = c, Y = α)

If you don’t recall, here is 
how it can be recomputed

P(X |Y = α)

• Conditional distribution has the following form:

• Individual terms of the conditional distribution 
has the following form:
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Conditional Probability Distribution

• It tells us the relative propensity
• Conditional probability distribution of any single random variable (eg, X) conditioned on 

other variable’s (eg, Y) value fixed to a particular value

X=a X=b X=c
Y= 0.1 0.05 0.1
Y= 0.1 0.3 0.1
Y= 0.05 0.05 0.15

α
β
γ
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P(X = a |Y = α) = ?

P(X = b |Y = α) = ?

P(X = c |Y = α) = ?

• In this example, you need to compute three conditional probabilities to form a valid 
distribution
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Conditional Probability Distribution

• It tells us the relative propensity
• Conditional probability distribution of any single random variable (eg, X) conditioned on 

other variable’s (eg, Y) value fixed to a particular value

X=a X=b X=c
Y= 0.1 0.05 0.1
Y= 0.1 0.3 0.1
Y= 0.05 0.05 0.15

α
β
γ
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P(X = a |Y = α) =
P(X = a, Y = α)

P(Y = α)

                         = 0.25P(Y = α)

We computed this 
marginal probability term 

earlier

P(X = b |Y = α) =
P(X = b, Y = α)

P(Y = α)

P(X = c |Y = α) =
P(X = c, Y = α)

P(Y = α)

• In this example, you need to compute three conditional terms to make it a distribution
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Exercise 3: Conditional Probability Distribution
X=a X=b X=c

Y= 0.1 0.05 0.1

Y= 0.1 0.3 0.1

Y= 0.05 0.05 0.15

α
β
γ

• Aggregating individual conditional probability values into a histogram to make the 
probability distribution as follows:

CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

[P(X = a |Y = α), P(X = b |Y = α), P(X = c |Y = α)]
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Exercise 3: Conditional Probability Distribution

• It tells us the relative propensity
• Conditional probability distribution of any single random variable (eg, X) conditioned on 

other variable’s (eg, Y) value fixed to a particular value

X=a X=b X=c
Y= 0.1 0.05 0.1
Y= 0.1 0.3 0.1
Y= 0.05 0.05 0.15

α
β
γ
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P(X = a |Y = α) = ?

=
P(X = a, Y = α)

P(Y = α)

=
0.1

P(Y = α)

                         = 0.25P(Y = α)

We computed this 
marginal probability term 

earlier

=
0.1
0.25

= 0.4
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Exercise 3: Conditional Probability Distribution

• It tells us the relative propensity
• Conditional probability distribution of any single random variable (eg, X) conditioned on 

other variable’s (eg, Y) value fixed to a particular value

X=a X=b X=c
Y= 0.1 0.05 0.1
Y= 0.1 0.3 0.1
Y= 0.05 0.05 0.15

α
β
γ
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P(X = b |Y = α) = ?

=
P(X = b, Y = α)

P(Y = α)

=
0.05

P(Y = α)

                         = 0.25P(Y = α)

=
0.05
0.25

= 0.2

We computed this 
marginal probability term 

earlier
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Exercise 3: Conditional Probability Distribution

• It tells us the relative propensity
• Conditional probability distribution of any single random variable (eg, X) conditioned on 

other variable’s (eg, Y) value fixed to a particular value

X=a X=b X=c
Y= 0.1 0.05 0.1
Y= 0.1 0.3 0.1
Y= 0.05 0.05 0.15

α
β
γ

CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

P(X = c |Y = α) = ?

=
P(X = c, Y = α)

P(Y = α)

=
0.1

P(Y = α)

                         = 0.25P(Y = α)

=
0.1
0.25

= 0.4

We computed this 
marginal probability term 

earlier
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Exercise 3: Conditional Probability Distribution
X=a X=b X=c

Y= 0.1 0.05 0.1

Y= 0.1 0.3 0.1

Y= 0.05 0.05 0.15

α
β
γ

• Aggregating individual conditional probability values into a histogram to make the 
probability distribution as follows:
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[P(X = a |Y = α), P(X = b |Y = α), P(X = c |Y = α)]

[0.4, 0.2, 0.4]

P(X |Y = α)
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Probability Basics

• Probability Distribution

CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

• Joint Probability Distribution

• Marginal Probability Distribution
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Bayes Rule
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Bayes’ Rule

Bayes’ rule is useful when you want to know something about Y, but 
all you can directly observe is X

• This process is called Bayesian inference
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Bayes’ Rule

                    is called the posterior probability
It represents what we know about y given x
If we know x has a distribution p(x) then p(y|x) is a more informative distribution

                  is called the prior probability
It represents what we know about y before we consider x

                  is called the likelihood
We will often define the relationship between y and x in terms of conditional probability

                  is called the evidence
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