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* Discrete Probability Distribution
» Joint Probability Distribution
* Marginal Probability Distribution

» Conditional Probability Distribution
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Continuous Probability Distribution

* Probability Distribution

* Continuous Probabilities

* Continuous Probability Distribution and Random Variable

* Probability distribution is a function which will depend on a random variable eg, X

* If the random variable X takes continuous values then you get continuous probabilities
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Continuous Probability Distribution

 Probability Density Function (pdf)

* The random variable x takes on continuous values or real numbers

* The probability is now expressed in terms of probability density function (pdf)

q(z) > 0

/+w g(z)dx =1

o0

* It specifies the probability of the continuous random variable falling within a
particular range of values (eg, between a and b), as opposed to taking on any
one value

b
Pla<z<b) = / o(z)dz

The continuous random variable to take on any particular value is 0
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Gaussian Distribution

A Gaussian distribution has two parameters:
e mean M
e standard deviation O

A one-dimensional Gaussian distribution 1 — (= )2
can be expressed using the following P( X) — exp 262
probability density function (pdf) \/zz T 02)

A one-dimensional Gaussian distribution

—(x)?
with # = 0, 6 = 1 can be expressed P( .X) — exp )
using the following probability density \/Z p) 71')
function (pdf)
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Exercise: Gaussian Distribution (1D)

Use the given notebook and generate a 1-D Gaussian distribution by varying the mean
and standard deviation. Observe how the shape of the Gaussian distribution changes
according to these parameter adjustments.

Gaussian Distribution with mean=1.5 and std_dev=2.0 Gaussian Distribution with mean=-1.5 and std dev=0.5
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Exercise: Gaussian Distribution (1D)

plt.figure(figsize=(4,2))

mean = -1.5

std_dev = 0.5

Xmin = -8

Xmax =8

X = np.linspace(xmin, xmax, 100)

p = np.exp(-0.5k((x-mean)/std_dev)*x2) / (std_dev * np.sqrt(2*np.pi))

plt.plot(x, p, 'r', linewidth=2)

plt.title('Gaussian distribution with mean='+str(mean)+', std_dev='+str(std_dev))
plt.xlabel('continuous random variable x' )
plt.ylabel('Probability density')

plt.show()|
Gaussian Distribution with mean=1.5 and std_dev=2.0 Gaussian Distribution with mean=-1.5 and std dev=0.5
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- Joint Probability Distribution
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2D (Multivariate) Normal Distribution

A multivariate normal distribution is a Gaussian distribution for two or more continuous
random variables. For example, a 2-dimensional Gaussian distribution has a probability
density function (pdf) expressed with P(x, y)

For example, for 2D normal distribution, the two random variable x, y can be packed
Into a vector z

A multivariate normal distribution has two parameters:
* mean vector K
e covariance matrix 2

For example, the mean ¢ could be a 2D vector defining the position of the distribution
The covariance 22 is a symmetric 2x2 matrix that describes the shape of the distribution

> [‘7%1 ‘7%2]

g 2 g 2
D 21 22
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2D (Multivariate) Normal Distribution

A 2D multivariate normal distribution can be expressed using the following probability
density function:

—z-wIzz—p

P(x,y) = P(z) = 1 exp 2

Determinant of a matrix
(here covariant matrix)

The two random variables’ vector z = BC] X
" For example =1 0

Mean vector U = [’u 1] -

2 52 For example _ (05 0.0
Covariance matrix ¥y — [GH 612] P = 0.0 0.5

2 2 -

031 022
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2D (Multivariate) Normal Distribution

Generate a 2D Gaussian distribution and plot it to visualize the probability density at

different locations on the 2D grid.

# let's generate a spherical 2D Gaussian distribution
mean = [2.0, \
1.0]
[[0.5, @.0], \
(0.0, 0.5]]

covariance_matrix =

generate_2d_gaussian_distribution(mean, covariance_matrix)

2D Gaussian distribution
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Probability density

# let's generate a spherical 2D Gaussian distribution
mean = [2.0, \
-1.6]

# let's increase the magnitude of the covariance matrix entries

[[2.0, 0.0], \
[0.0, 2.0]]
generate_2d_gaussian_distribution(mean, covariance_matrix)

covariance_matrix =

2D Gaussian distribution
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Exercise #2: 2D (Multivariate) Normal Distribution

Change the mean vector and covariance matrix to generate a 2D Gaussian distribution of
different shapes and plot it to visualize the probability density at different locations on the
2D grid.

2D Gaussian distribution 2D Gaussian distribution
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v
0.01
0.015
-4 -2 0 2 4 0.00 0.000
) . -4 -2 0 2 4
continous random variable: x . .
continous random variable: x
Your turn: Generate a diagonal covariance matrix Your turn: Generate a diagonal covariance matrix
(which will spread the probability density (which will spread the probability density
diagonally, more towards the x-coordinate). diagonally, more towards the y-coordinate).
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Exercise #2: 2D (Multivariate) Normal Distribution

Change the mean vector and covariance matrix to generate a 2D Gaussian distribution of
different shapes and plot it to visualize the probability density at different locations on the
2D grid.

2D Gaussian distribution 2D Gaussian distribution

0.200 0.200
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3 o
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Your turn: Generate a full covariance matrix Your turn: Generate a full covariance matrix
(which will spread the probability density (which will spread the probability density
diagonally, more towards the x-coordinate). diagonally, more towards the y-coordinate).
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Other Common Probability Distributions
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Data Type Domain Distribution
univariate, discrete, z e {0,1} Bernoulli
binary
univariate, discrete, z€e{1,2,....,K} categorical
multivalued
univariate, continuous, zeR univariate normal
unbounded
univariate, continuous, z € [0,1] beta
bounded
multivariate, continuous, x € RE multivariate normal
unbounded

multivariate, continuous,
bounded, sums to one

X = [$1,$2,...,$K]T
Tk € [0,1],Ei{=1 Ty = 1

Dirichlet

bivariate, continuous, x = [21,Z2] normal-scaled
z1 unbounded, z; €R inverse gamma
x5 bounded below zo €ERT
vector x and matrix X, x e R¥ normal
x unbounded, X eRBxk inverse Wishart

X square, positive definite

2TXz>0 VzeRK

oo

CS 195: Computer Vision | Alimoor Reza (md.reza@drake.edu)

15



Today

- Marginal Probability Distribution
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Marginal Probability Distribution

* The marginal probability distribution expresses probability distribution of any single random
variable from a joint probability distribution by integrating over all other variables

Joint distribution

P(x,y) = P(z) =

—z-wIzz-p
2

! exp
2m/(|Z])

Marginal Marginal
distribution distribution

P(x) = JP(x, y)dy P(y) = [ P(x,y)dx

Notice
the similarity, the
discrete marginal distribution
has a summation term

instead of int ti
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Marginal Probability Distribution

* Let’s consider a joint probability distribution of a 2D Gaussian distribution as follows:

# Let's generate a full covariance matrix
# 2D Gaussian is centered at (@, @) coordinate
mean = [0.0, \

0.0]

# covariance matrix spreads the probability density in all directions.
covariance_matrix = [[0.8, 0.7], \

(0.7, 1.31]]
generate_2d_gaussian_distribution(mean, covariance_matrix)

2D Gaussian distribution
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Marginal Probability Distribution

* The marginal probability distribution Marginal distribution P(x) for a 2D Gaussian distribution

eqe . . . >
expresses probability distribution of £ 0.08 1
c
any single random variable from a 3;’ 0.06 7
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T
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Today

- Conditional Probability Distribution
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Conditional Probability Distribution

* The conditional probability distribution of any single random variable (eg, x) conditioned on
other variable’s (eg, y) value fixed to a particular value.

* It tells us the relative propensity of the random variable x to take different outcomes given
that the random variable y is fixed to the value y*

Conditional

distribution

P(x|y = y*)

Notice the similarity,
the discrete conditional distribution
has a summation term instead of
integration term.

PX=a,Y=10)

PX=alY=a)= PV =a)

_ PX=aY=a)
T PX=aY=a)+PX=bY=a)+PX=c,Y=a

Joint distribution

PG y)
P(y = y*)—

P(x,y)

It’s a marginal
distribution for a
fixed value of y*

| P(x,y = y*) dx
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Conditional Probability Distribution

* Let’s consider a joint probability distribution of a 2D Gaussian distribution as follows:

# Let's generate a full covariance matrix
# 2D Gaussian is centered at (@, @) coordinate
mean = [0.0, \

0.0]

# covariance matrix spreads the probability density in all directions.
covariance_matrix = [[0.8, 0.7], \

(0.7, 1.31]]
generate_2d_gaussian_distribution(mean, covariance_matrix)

2D Gaussian distribution
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Conditional Probability Distribution

* The conditional probability distribution P(xly=y*) expresses the relative propensity
of the random variable x to take different outcomes given that the random variable y
is fixed to the value y*

2D Gaussian distribution

0.009
0.008
>
. - 0.007
anditional distribution o JConditionaI distribution
slice for = slice for
P(x|y =0.10) 9 P(x|y = 1.73)
8 2
o - 0.004 5
a 8
Conditional distribution - 0.003 ©
slice for c o
P(x|y=-1.73 =
(xly ) < 0.002
™)
0.001
0.000
-4 -2 0 2 4
continous random variable: x
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Conditional Probability Distribution

Conditional distribution P(x|y=+1.73) for a 2D Gaussian distribution
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Exercise#4: 2D Normal Distribution

Change the mean vector and covariance matrix to generate a 2D Gaussian distribution of
different shapes and recompute three conditional distributions

P(xl y=-1.73), P(xl y=0.10) and P(xly=+1.73).

2D Gaussian distribution
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