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Announcements

* Quiz #1
* released
« will be due next Wednesday 02/28 by 11:59am (noon)

5 _/Assignments

Anything that you will turn in will live in this folder.

' Attendance
Y1 Due date: 5/17/24, 12:00 PM
The score represents the percentage of time the student was physically present in class (max score is 100%). Attendance was recorded on physical
paper, with students adding their signature on the provided sheet.

ooz| Quiz #1: Foundations of Machine Learning
Due date: 2/28/24, 11:59 AM

—| Notebook 0 : Onboarding
¥—1 Due date: 2/1/24, 11:59 PM

—| In-class activity#1
—1 Due date: 2/6/24, 12:00 PM
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Announcements

 Notebook #3: Cross Validation

* released
* due next Thursday 02/29 by 11:59pm
« to submit, download the ipynb file from Colab
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https://github.com/alimoorreza/CS167-SP24-Notebook-3/

Before we get started, let's load in our datasets:

* Make sure you change the path to match your Google Drive.
* Load the vehicle.csv file from your Google Drive

[2] #run this cell if you're using Colab:
from google.colab import drive
drive.mount('/content/drive')

#import the data:

#make sure the path on the line below corresponds to the path where you put your
import pandas as pd

import numpy as np

data = pd.read_csv('/content/drive/MyDrive/cs167_fall23/datasets/vehicles.csv')
pd.set_option('display.max_columns', 100)

iris = pd.read_csv('/content/drive/MyDrive/cs167_fall23/datasets/irisData.csv"')
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Today’s Agenda

* Review: Weighted k-NN
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Quick Review: k-Nearest Neighbor (k-NN)

« The way we've learned k-Nearest-Neighbor (k-NN) so far, each neighbor
gets an equal vote in the decision of what to predict.

« Do we see any problems with this? If so, what?
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« Should neighbors that are closer to the new instance get a larger share of the vote?
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Quick Review: Weighted k-NN Intuition

* In weighted kNN, the nearest k points are given a weight, and the weights
are grouped by the target variable. The class with the largest sum of
weights will be the class that is predicted

« The intuition is to give more weight to the points that are nearby and less
weight to the points that are farther away.

« distance-weighted voting
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Quick Review: Weighted k-NN Intuition

* In w-kNN, we want to predict the target variable with the most weight,
where the weight is defined by the inverse distance function
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* In English, you can read that as the weight of a training example is equal
to 1 divided by the distance between the new instance and the training

example squared
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Quick Review: Weighted k-NN Example: Step 1

« Start by calculating the distance between the new example X, and each
of the other training examples:

Example # Distance Weight
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Quick Review: Weighted k-NN Example: Step 2

« Then, calculate the weight of each training example using the inverse
distance squared.

Example # Distance Weight

0 1 | 5 1125

2
. 3 7 1/49
e 4 S 1/25
» 1 - 5 4 1/16
v d(xq, Xi) |
6 3 1/9
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Quick Review: Weighted k-NN Example: Step 3

*  Find the k closest neighbors — let's assume K=3 for this example:

Example # Distance Weight

- 5 | 4 | 1/16

6 3 1/9
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Quick Review: Weighted k-NN Example: Step 4

« Then, sum the weights for each possible class:

 Orange: 1
e Blue: 1/16 +1/9 =0.115

 What would a normal 3NN predict?
* What would a Weighted 3NN predict?

O Example # Distance Weight
x B , 1 1
. 5 4 116
. . .
wq, d(x, %) 6 3 1/9
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Quick Review: Programming Exercise #3

« Write a new function weighted knn()

« Pass the iris measurements (specimen), data frame, and k as parameters and return
the predicted class

import numpy as np
def weighted_knn(specimen, data, k):

# step 1: calculate the distances from 'specimen' to all other samples in 'data’

data['distances'] = np.sqrt( (specimen['petal length'] - data['petal length'])**2 +
(specimen['sepal length'] - datal['sepal length'])**2 +
(specimen|['petal width'] - data['petal width'])*x*2 +
(specimen(['sepal width'] - data['sepal width'])*x2 )

# step 2: calculate the weights for each sample (remember, weights are 1/d”*2)
# data['weights'] = ... (TBD)

# step 3: find the k closest neighbors as follows
# first: sort the data and take the first k samples as neighbors

sorted_data = data.sort_values(['distances'])

print('Nearest k samples in the training data:')

neighbors = sorted_data.iloc[0:k]

# second: use groupby to sum the weights of each species in the closest k
# TBD

# third: return the class that has the largest sum of weight.
# TBD
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Today’s Agenda

« Graph Plot
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Graph Plot

Use markers and line styles to differentiate your series:

Markers Line Styles

character description character description

point marker solid line style

pixel marker ' dashed line style

circle marker -t dash-dot line style

triangle_down marker h dotted line style

triangle_up marker

# blue markers with default shape

# red circles

# green solid line

# dashed line with default color

# black triangle_up markers connected by a dotted line
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Graph Plot: example#1

import matplotlib.pyplot as plt my rocking plot

o
FS
|

%smatplotlib inline 10
#define our data 0.8 1
xvals = [1,2,3,4,5]
series1l = [[0.66,0.61,0.69,0.73,0.77]] £ 06
series2 = [0.8,0.83,0.77,0.81,0.79] >
series3 = [0.55,0.67,0.5,0.73,0.66] :

=

#add titles to axis and graph

plt.suptitle('my rocking plot', fontsize=16) 027 _q- 1st series
plt.xlabel('a very cool x axis') T 2ndsenes
plt.ylabel('awesome y axis') 0.0

0 1 2 3 4 5
a very cool x axis

#plot the data

plt.plot(xvals, seriesl, 'ro—-', label='lst series')
plt.plot(xvals, series2, 'bs-.', label='2nd series')
plt.plot(xvals, series3, 'g”~-', 1label='3rd series"')
plt.legend() #plt.legend(loc='lower right', shadow=True)
plt.axis([0,6,0,1]) #[x_min, x_max, y_min, y_max]
plt.show()
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Graph Plot: example#2

gas_vehicles = datal[datal'fuelType'l=="Regular']

# a silly function that returns the average MPG for the first k cars in the df
def getAverageMPG(data, k):
return data["comb@8"].iloc[@:k].mean()

Average MPG

number_of_points = 500
24
#populate the series list
series = [] 221
for i in range(1, number_of_points):
val = getAverageMPG(gas_vehicles, i) 201
series.append(val)
18 A
#plot it!
xvals = range(1l, number_of_points)
plt.suptitle('Average MPG', fontsize=18)
plt.xlabel('cars used in average')
plt.ylabel('average MPG')
plt.plot(xvals, series, 'r,-', label='MPG')
plt.legend(loc="'lower right', shadow=True) " ' . . ' — wa}
plt.axis([1, number_of_points, 10,25]) 100 200 300 400 500
plt .show() cars used in average

average MPG

14 A

12 1
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Group Exercise

« Given the code from the previous slide:
« change the number of points to 20
« change the line to green triangles
« also plot the median (red dots)
MPG

30.0

27.5 7

25.0 A

22.5 A

20.0 A

... MPG

17.5 A

15.0 A

12.5 A —&— meanMPG
—8— medianMPG

10-0 T T T T T T T
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

carsusedin ...
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Today’s Agenda

e Evaluation Metrics
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How do we know if our model is a 'good’ model?

«  We want to know how good our models are at making predictions... how
can we test it? Examples:

« what k-value should we use in kNN algorithm?
« what is the effect on accuracy if | normalize the data?

« should | use a weighted kNN algorithm or a normal KNN?
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Evaluation of Machine Learning Algorithms:

We want to know how good our model is at making predictions. How can
we test it?

Option 1: Deploy the model in a live setting and see how it does on new
examples

Option 2: Run each of our training examples through the model and see
how many it gets correct

Option 3: Cross-Validation - set aside some of your training examples to
be used for testing

don't use testing examples when you train the model, only the rest that were left over.
Why?
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Cross-Validation

Don't train the model on the testing data!

Randomly
Split

Used to build

L
| Training | themode
Original Set
Dataset
Testing
\3

Used to test

Set the model

CS 167: Machine Learning



Cross-Validation Code

« A good rule of thumb is that we like to train our model with 80% of the
given data examples (training set), and test it on

« Splitting datasets into training and sets with a Pandas DataFrame:

Randomly
Split

import pandas as pd
import numpy as np

Used to build

Training the model
#shuffle the iris "sampling" the full set in random order Origina| % Set

shuffled_data = iris.sample(frac=1, random_state=41)
Dataset

# set up training and testing set

test_data = shuffled_data.iloc[0:20] #test on the first 20 rows of shuffled

train_data = shuffled_data.iloc[20:] #train on the rest TeStmg Used to test
train_data.shape Set the model
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Cross-Validation Metrics

« When doing cross-validation, how do we tell how well our model performed?

 How can we measure it?
« depends on the task and what we want to know

* What metrics to use for classification and regression?
« The output variable in regression is numerical (or continuous).
« The output variable in classification is categorical (or discrete).
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Today’s Agenda

e Evaluation Metrics

e Classification metrics
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Classification metrics

« Accuracy: The fraction of test examples your model predicted correctly
« Example: 17 out of 20 = 0.85 accuracy

« |ssues with accuracy: suppose that a blood test for cancer has 99%
accuracy

O can we safely assume this is a really good test?
= [If the dataset is unbalanced, accuracy is not a reliable metric for the real

performance of a classifier because it will yield misleading results
= Example: Most people don’t have cancer

o Beware of what your metrics don't tell you
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Classification metrics

« Accuracy: The fraction of test examples your model predicted correctly
« Example: 17 out of 20 = 0.85 accuracy

« |ssues with accuracy: What about false negatives and false
positives?

o false positives: a test result which incorrectly indicates that a particular
condition or attribute is present

o false negative: a test result which incorrectly indicates that a particular

condition or attribute is absent Predicted class

P N
PS5 3
Actual
Class
20090
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Classification metrics: Confusion Matrix

Confusion matrix: A specific table layout that allows the visualization of
the performance of an algorithm.

Each row represents instances in an actual class

While each column represents the instances in a predicted class

« It makes it easy to see where your model is confusing the predicted
and actual results. For a binary classification problem:

Predicted condition

Total population

Positive (PP) Negative (PN)
=P+N

Positive (P) | True positive (TP) | False negative (FN)

Negative (N) False positive (FP) True negative (TN)

Actual condition
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Classification metrics: Confusion Matrix

Predicted condition

Total population

Positive (PP) Negative (PN)
=P+N

Positive (P) True positive (TP) | False negative (FN)

Negative (N) False positive (FP) True negative (TN)

Actual condition

« Confusion matrix:
« Each row represents instances in an actual class
*  While each column represents the instances in a predicted class

« To build the confusion matrix let’s map the actual classifications and
predicted classifications using the following flat table:

Individual Number 1 2 3 4 5 6 7 8 9 10 11 12
Actual Classification 1 1 1 1 1 1 1 1 O O 0 o
Predicted Classification 0 0 1 1 1 1 1 1 1 O O O

Result
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Exercise: Confusion Matrix

Confusion matrix: A specific table layout that allows the visualization of
the performance of an algorithm

Individual Number 1 2/ 3/ 4 5 6 7 8 9 10 11 12
Actual Classification 1 1 1 1 1 1 1 1 O 0 O ©O
Predicted Classification 0 0 1 1 1 1 1 1 1 O 0 O

Result

Given the following confusion matrix:

* how many true positive? 6
* how many true negatives? 3
* how many false positive? 1
* how many false negatives? 2
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Exercise: Confusion Matrix

Confusion matrix: A specific table layout that allows the visualization of
the performance of an algorithm

Individual Number 1 2 /3 4 5 6 7 8 9 10 11 12
Actual Classification 1111|111 (1{0[0]|0]|O0
Predicted Classification 0 O0 1 1 1 1 1 1 1 0 0 O
Result FN FN TP TP TP TP TP TP FP TN TN TN

Given the following confusion matrix:

* how many true positive? 6
* how many true negatives? 3
* how many false positive? 1
* how many false negatives? 2
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Summarize the Results in Confusion Matrix

Predicted condition

Total population

Positive (PP) Negative (PN)
=P+N

Positive (P) | True positive (TP) | False negative (FN)

Negative (N) | False positive (FP)

Actual condition

« Given the following confusion matrix:

* how many true positive? ) )
* how many true negatives? 6 y)
* how many false positive? Py

* how many false negatives? Class X X
* what is the accuracy? N 1 3

CS 167: Machine Learning



Classification metrics: Confusion Matrix

For a multi-class (more than 2) classification problem:

the confusion matrix looks like below where each row represents

instances in an actual class; while each column represents the
instances in a predicted class

Confusion matrix, without normalization

setosa

versicolor 1

True label

virginica 0

T T — 0
setosa versicolor virginica
Predicted label
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