CS167: Machine Learning

Graph Plot Evaluation Metrics

Thursday, February 22nd, 2024

Announcements

- Quiz #1
 - released
 - will be due next Wednesday 02/28 by 11:59am (noon)

 \wedge

Anything that you will turn in will live in this folder.
Attendance Due date: 5/17/24, 12:00 PM The score represents the percentage of time the student was physically present in class (max score is 100%]. Attendance was recorded on physical paper, with students adding their signature on the provided sheet.
Quiz #1: Foundations of Machine Learning Due date: 2/28/24, 11:59 AM
Notebook 0 : Onboarding Due date: 2/1/24, 11:59 PM
In-class activity#1 Due date: 2/6/24, 12:00 PM

Announcements

- <u>Notebook #3: Cross Validation</u>
 - released
 - due next Thursday 02/29 by 11:59pm
 - to submit, download the ipynb file from Colab

Before we get started, let's load in our datasets:

- Make sure you change the path to match your Google Drive.
 - Load the vehicle.csv file from your Google Drive

[2] #run this cell if you're using Colab: from google.colab import drive drive.mount('/content/drive')

```
#import the data:
#make sure the path on the line below corresponds to the path where you put your
import pandas as pd
import numpy as np
data = pd.read_csv('/content/drive/MyDrive/cs167_fall23/datasets/vehicles.csv')
pd.set_option('display.max_columns', 100)
iris = pd.read_csv('/content/drive/MyDrive/cs167_fall23/datasets/irisData.csv')
```

Today's Agenda

• Review: Weighted k-NN

• Graph Plot

- Evaluation Metrics
 - Classification metrics
 - Regression metrics

Quick Review: k-Nearest Neighbor (k-NN)

- The way we've learned k-Nearest-Neighbor (k-NN) so far, each neighbor gets an equal vote in the decision of what to predict.
- Do we see any problems with this? If so, what?

• Should neighbors that are closer to the new instance get a larger share of the vote?

CS 167: Machine Learning

Quick Review: Weighted k-NN Intuition

• In weighted kNN, the nearest k points are given a weight, and the weights are grouped by the target variable. The class with the largest sum of weights will be the class that is predicted

- The intuition is to give more weight to the points that are nearby and less weight to the points that are farther away.
 - distance-weighted voting

Quick Review: Weighted k-NN Intuition

 In w-kNN, we want to predict the target variable with the most weight, where the weight is defined by the inverse distance function

$$w_{q,i} = \frac{1}{d(x_q, x_i)^2}$$

 In English, you can read that as the weight of a training example is equal to 1 divided by the distance between the new instance and the training example squared

• Start by calculating the distance between the new example *X*, and each of the other training examples:

• Then, calculate the weight of each training example using the inverse distance squared.

	Example #	Distance	Weight
2	1	5	1/25
X	2	1	1
	3	7	1/49
3	4	5	1/25
$w_{q,i} = \frac{1}{(1-1)^2}$	5	4	1/16
$d(x_q, x_i)^2$	6	3	1/9

• Find the k closest neighbors – let's assume k=3 for this example:

- Then, sum the weights for each possible class:
 - Orange: 1
 - Blue: 1/16 + 1/9 = 0.115
- What would a **normal 3NN** predict?
- What would a **Weighted 3NN** predict?

Quick Review: Programming Exercise #3

- Write a new function weighted_knn()
- Pass the iris measurements (specimen), data frame, and k as parameters and return the predicted class

```
import numpy as np
def weighted_knn(specimen, data, k):
 # step 1: calculate the distances from 'specimen' to all other samples in 'data'
 data['distances'] = np.sqrt( (specimen['petal length'] - data['petal length'])**2 +
                               (specimen['sepal length'] - data['sepal length'])**2 +
                               (specimen['petal width'] - data['petal width'])**2 +
                               (specimen['sepal width'] - data['sepal width'])**2 )
 # step 2: calculate the weights for each sample (remember, weights are 1/d^2)
 # data['weights'] = ... (TBD)
 # step 3: find the k closest neighbors as follows
 # first: sort the data and take the first k samples as neighbors
 sorted data
                    = data.sort values(['distances'])
 print('Nearest k samples in the training data:')
                    = sorted data.iloc[0:k]
 neighbors
 # second: use groupby to sum the weights of each species in the closest k
 # TBD
 # third: return the class that has the largest sum of weight.
 # TBD
```

Today's Agenda

• Weighted k-NN

• Graph Plot

- Evaluation Metrics
 - Classification metrics
 - Regression metrics

Graph Plot

• Use markers and line styles to differentiate your series:

Line Styles	
character	description
1-1	solid line style
''	dashed line style
(1 -, 1)	dash-dot line style
":"	dotted line style

'b' 'or'	<pre># blue markers with default shape # red circles</pre>
'-g'	# green solid line
''	# dashed line with default color
'^k:'	<pre># black triangle_up markers connected by a dotted line</pre>

Graph Plot: example#1

Graph Plot: example#2

Group Exercise

- Given the code from the previous slide:
 - change the number of points to 20
 - change the line to green triangles
 - also plot the median (red dots)

MPG

CS 167: Machine Learning

Today's Agenda

• Weighted k-NN

• Graph Plot

- Evaluation Metrics
 - Classification metrics
 - Regression metrics

How do we know if our model is a 'good' model?

- We want to know how good our models are at making predictions... how can we test it? Examples:
 - what k-value should we use in kNN algorithm?
 - what is the effect on accuracy if I normalize the data?
 - should I use a weighted kNN algorithm or a normal kNN?

Evaluation of Machine Learning Algorithms:

• We want to know how good our model is at making predictions. How can we test it?

- **Option 1:** Deploy the model in a live setting and see how it does on new examples
- **Option 2:** Run each of our training examples through the model and see how many it gets correct
- Option 3: Cross-Validation set aside some of your training examples to be used for testing
 - don't use testing examples when you train the model, only the rest that were left over. Why?

Cross-Validation

• Don't train the model on the testing data!

Cross-Validation Code

- A good rule of thumb is that we like to train our model with 80% of the given data examples (training set), and test it on 20% of the given data examples (testing set)
- Splitting datasets into training and testing sets with a Pandas DataFrame:

Cross-Validation Metrics

• When doing cross-validation, how do we tell how well our model performed?

- How can we measure it?
 - depends on the task and what we want to know

- What metrics to use for classification and regression?
 - The output variable in **regression** is numerical (or continuous).
 - The output variable in **classification** is categorical (or discrete).

Today's Agenda

• Weighted k-NN

• Graph Plot

- Evaluation Metrics
 - Classification metrics
 - Regression metrics

Classification metrics

- Accuracy: The fraction of test examples your model predicted correctly
 - *Example*: 17 out of 20 = 0.85 accuracy
- Issues with accuracy: suppose that a blood test for cancer has 99% accuracy
 - *can we safely assume this is a really good test?*
 - If the dataset is *unbalanced*, accuracy is not a reliable metric for the real performance of a classifier because it will yield misleading results
 - **Example**: Most people don't have cancer
 - Beware of what your metrics don't tell you

Classification metrics

- Accuracy: The fraction of test examples your model predicted correctly
 - *Example*: 17 out of 20 = 0.85 accuracy
 - Issues with accuracy: What about false negatives and false positives?
 - **false positives**: a test result which incorrectly indicates that a particular condition or attribute is present
 - **false negative**: a test result which incorrectly indicates that a particular condition or attribute is absent

Classification metrics: Confusion Matrix

- **Confusion matrix:** A specific table layout that allows the visualization of the performance of an algorithm.
- Each row represents instances in an actual class
- While each column represents the instances in a predicted class
 - It makes it easy to see where your model is confusing the predicted and actual results. For a binary classification problem:

		Predicted	condition
	Total population = P + N	Positive (PP)	Negative (PN)
ondition	Positive (P)	True positive (TP)	False negative (FN)
Actual c	Negative (N)	False positive (FP)	True negative (TN)

Classification metrics: Confusion Matrix

		Predicted	condition
	Total population = P + N	Positive (PP)	Negative (PN)
ondition	Positive (P)	True positive (TP)	False negative (FN)
Actual c	Negative (N)	False positive (FP)	True negative (TN)

• Confusion matrix:

- Each row represents instances in an actual class
- While each column represents the instances in a predicted class
- To build the confusion matrix let's map the actual classifications and predicted classifications using the following flat table:

Individual Number	1	2	3	4	5	6	7	8	9	10	11	12
Actual Classification	1	1	1	1	1	1	1	1	0	0	0	0
Predicted Classification	0	0	1	1	1	1	1	1	1	0	0	0
Result												

Exercise: Confusion Matrix

 Confusion matrix: A specific table layout that allows the visualization of the performance of an algorithm

Individual Number	1	2	3	4	5	6	7	8	9	10	11	12
Actual Classification	1	1	1	1	1	1	1	1	0	0	0	0
Predicted Classification	0	0	1	1	1	1	1	1	1	0	0	0
Result												

6

3

1

2

- Given the following confusion matrix:
 - how many true positive?
 - how many true negatives?
 - how many false positive?
 - how many false negatives?

Exercise: Confusion Matrix

 Confusion matrix: A specific table layout that allows the visualization of the performance of an algorithm

Individual Number	1	2	3	4	5	6	7	8	9	10	11	12
Actual Classification	1	1	1	1	1	1	1	1	0	0	0	0
Predicted Classification	0	0	1	1	1	1	1	1	1	0	0	0
Result	FN	FN	TP	TP	TP	TP	TP	TP	FP	TN	TN	TN

6

3

1

2

- Given the following confusion matrix:
 - how many true positive?
 - how many true negatives?
 - how many false positive?
 - how many false negatives?

Summarize the Results in Confusion Matrix

٠

•

٠

٠

•

Classification metrics: Confusion Matrix

- For a multi-class (more than 2) classification problem:
 - the confusion matrix looks like below where each row represents instances in an actual class; while each column represents the instances in a predicted class

