CS167: Machine Learning

k-Nearest Neighbor (k-NN) Handling Missing Data Data Normalization

Thursday, February 15th, 2024

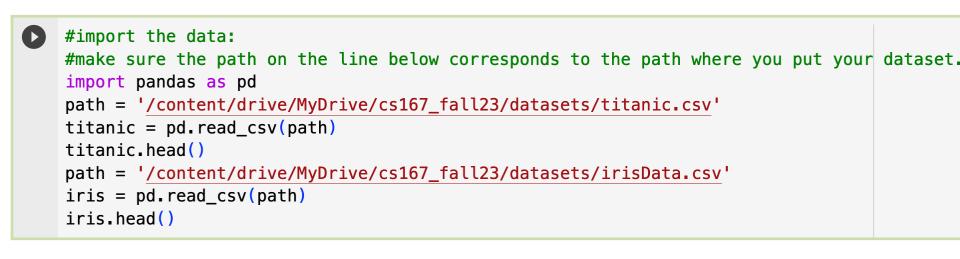
Announcements

- <u>Notebook #2: kNN and Normalization</u> is released today
 - due Wednesday 02/21 by 11:59pm
 - to submit, download the ipynb file from Colab
 - directly upload to CodePost
- Heads up that Quiz #1
 - will be released on Tuesday 02/20 after class
 - will be due Tuesday 02/27 by 11:59pm

Before we get started, let's load in our datasets:

- Make sure you change the path to match your Google Drive.
 - Load the titanic.csv file from your Google Drive

[2] #run this cell if you're using Colab: from google.colab import drive drive.mount('/content/drive')



Today's Agenda

- Topics:
 - kNN Implementation using Pandas

Missing Data

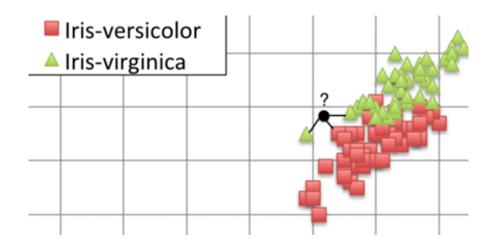
Normalization

3-Nearest Neighbor (3-NN)

- 3-Nearest-Neighbor Algorithm: predict the most commonly appearing class among the 3 closest training examples
 - In other words, k=3
- Let's assume this subset of Iris has only 2 classes (even number): Iris-versicolor

Iris-virginica

• What class will a **3NN** algorithm predict?



k-Nearest Neighbor (kNN)

- **k-Nearest-Neighbor** predict the most commonly occurring class of the *k nearest neighbors*.
 - 1. Calculate the distance between the new point (e.g. the Iris we would like to make a prediction on), and the existing training examples.
 - 2. Sort the data by the newly calculated distance so that the nearest training examples are first
 - 3. Take the top k neighbors:
 - if the problem is a *classification*, **take the mode of the target variable** to find the most commonly appearing class and return that as your prediction
 - if the problem is a *regression*, **take the average of the target variables** for the k closest neighbors and return that as your prediction

k-NN Implementation in Python/Pandas

- Let's build a 5-Nearest-Neighbor Iris classifier from scratch using our Pandas/Python skills:
- To implement this 5NN, we need to do 3 things:
 - 1. Calculate the distances from each of the rows to the new instance
 - 3. Sort the data by these distances
 - 5. Select the k closest training examples and use them to predict the most commonly occurring class of the closest neighbors.

Step 1: Calculate the Distances

- Let's start by adding a new column to our iris DataFrame that is the distance from each existing row to the new instance with:
 - 5.1 petal length, 7.2 sepal length, 1.5 petal width, and 2.5 sepal width
 - The syntax for adding a new column is as follows:

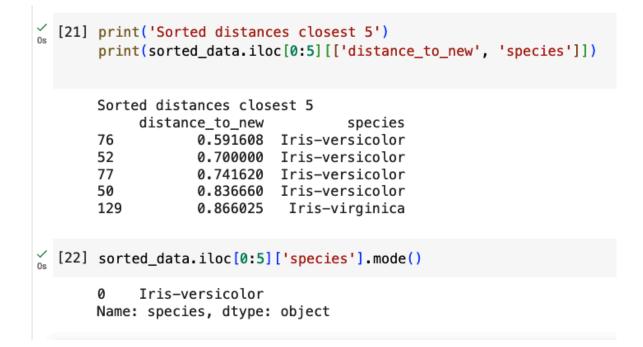
```
• df['new col name'] = _____
```

Step 2: Sort the data by the Distances

- Let's now sort our data using the built in sort_values() function.
 [documentation]
- We want to find the nearest k neighbors, so sorting them in ascending order (which is the default setting for sort_values() will work nicely.

```
[10] k=15
     sorted_data = iris.sort_values(['distance_to_new'])
     sorted data.head() #shortest distances first
                                                                                                           Ħ
           sepal length sepal width petal length petal width
                                                                            species distance to new
      76
                       6.8
                                     2.8
                                                     4.8
                                                                    1.4 Iris-versicolor
                                                                                                0.591608
                                                                                                           ıl.
       52
                       6.9
                                     3.1
                                                                        Iris-versicolor
                                                     4.9
                                                                    1.5
                                                                                                0.700000
                       6.7
                                                                    1.7 Iris-versicolor
      77
                                     3.0
                                                     5.0
                                                                                                0.741620
       50
                      7.0
                                     3.2
                                                     4.7
                                                                    1.4 Iris-versicolor
                                                                                                0.836660
      129
                      7.2
                                     3.0
                                                     5.8
                                                                    1.6
                                                                          Iris-virginica
                                                                                                0.866025
```

Step 3: Display the most common species among these 5



• And Viola! We have successfully implemented our first machine learning model from scratch.

k-NN All Steps

iris.head()

[10] k=**15**

sorted_data = iris.sort_values(['distance_to_new'])
sorted_data.head() #shortest distances first

Sorted d	istances close	est 5
dis	tance_to_new	species
76	0.591608	Iris-versicolor
52	0.700000	Iris-versicolor
77	0.741620	Iris-versicolor
50	0.836660	Iris-versicolor
129	0.866025	Iris-virginica

```
[22] sorted_data.iloc[0:5]['species'].mode()
```

0 Iris-versicolor
Name: species, dtype: object

Programming Exercise:

- Rewrite k-NN code so that it's a function.
- Pass the iris measurements (specimen), DataFrame, and k as parameters and return the predicted class.

```
def kNN(specimen, data, k):
    # write your code in here to make this function work
    # 1. calculate distances

    # 2. sort
    # 3. predict
    return prediction
```

Programming Exercise:

- Rewrite k-NN code so that it's a function.
- Pass the iris measurements (specimen), DataFrame, and k as parameters and return the predicted class.

```
new_iris = {}
new_iris['petal length'] = 5.1
new_iris['sepal length'] = 7.2
new_iris['petal width'] = 1.5
new_iris['sepal width'] = 2.5
# call the function you just wrote
kNN(new_iris, iris, 15)
```

Today's Agenda

- Topics:
 - kNN Implementation using Pandas

Missing Data

Normalization

- Most datasets you will work with will not be in perfect shape
 - you'll need to "clean" the data before you can run any machine learning algorithms on it.
- Missing data is a pretty common thing so much so that there's a special value for missing data:
 - NaN, or not a number.

- The steps of cleaning data normally include:
 - Step 1: Detecting which columns have missing data
 - Step 2: Determining how much data is missing in each column
 - Step 3: Deciding what to do with the missing data:
 - drop it
 - fill it
 - let it be

- Notice, in the deck column, there are 3 instances of NaN we can see...
- But what about the other 800 or so rows? Do we have to go through and find them manually?

ti	tanic.head	()										\frown	
	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton

- In order to identify missing data, we will use a combination of three Pandas functions:
 - **isna()** <u>https://pandas.pydata.org/docs/reference/api/pandas.isna.html</u>
 - **notna()** <u>https://pandas.pydata.org/docs/reference/api/pandas.notna.html</u>
 - **any()** <u>https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.any.html</u>

- Using isna() and notna() to find missing data:
 - isna(): will return a boolean series where it is **True** if the element is **NaN**
 - notna(): will return a boolean series where it is True if the element is not NaN

	API reference > General functions > pandas.isna
Input/output	
General functions ^	pandas.isna
pandas.melt	
pandas.pivot	<pre>pandas.isna(obj) [source]</pre>
pandas.pivot_table	Detect missing values for an array-like object.
pandas.crosstab	This function takes a scalar or array-like object and indicates whether values are missing
pandas.cut	(NaN in numeric arrays, None or NaN in object arrays, NaT in datetimelike).
pandas.qcut	Parameters:
pandas.merge	obj : scalar or array-like
pandas.merge_ordered	Object to check for null or missing values.

https://pandas.pydata.org/docs/reference/api/pandas.isna.html

CS 167: Machine Learning

titanic.loc[0:4]

S	urvived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southamptor
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southamptor
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southamptor

• Now, let's call isna(), and see what we get as an output

0		anic.loc[ook at the			n									
		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town
	0	False	False	False	False	False	False	False	False	False	False	False	True	False
	1	False	False	False	False	False	False	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False	False	False	False	False	True	False
	3	False	False	False	False	False	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	False	False	False	False	True	False

• **isna()** is pretty nifty but there should be better way to summarize this.

• any()

pandas.DataFrame.any	
DataFrame. <mark>any</mark> (*, axis=0, bool_only=False, skipna=True, **kwargs)	[source
Return whether any element is True, potentially over an axis.	

Returns False unless there is at least one element within a series or along a Dataframe axis

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.any.html

Step 1: Identifying Missing Data

 Let's use any() on the call to isna() we just did to let us know which columns have missing data:

	titanic.isna()	.any()	
	survived	False	
	pclass	False	
	sex	False	
(age	True	
-	sibsp	False	
	parch	False	
	fare	False	
C	embarked	True	\bigcirc
	class	False	
	who	False	
_	adult_male	False	
(deck	True	
(embark_town	True	\bigcirc
	alive	False	
	alone	False	
	dtype: bool		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

- Several columns are missing data: age, embarked, deck, and embark_town.
- Wouldn't it be great to know how much data is missing in each of those columns?

- The steps of cleaning data normally include:
 - Step 1: Identifying which columns have missing data
 - Step 2: Determining how much data is missing in each column
 - Step 3: Deciding what to do with the missing data:
 - drop it
 - fill it
 - let it be

- To decide how to handle our missing data, it's important to know how much missing data each column has:
 - If the missing data is a small proportion of the data, we choose to drop those rows completely from the dataset
 - However, if most of the rows are missing data for a specific column, maybe it's a sign that we don't need to use that column
- There are multiple ways of doing this, but one of the quickest/easiest is using value_counts()

 Great, so now that we know which columns are missing data, let's check to see how much data they are missing using value_counts()

pandas.Series.value_counts

Series.value_counts(normalize=False, sort=True, ascending=False,

bins=None, dropna=True)

[source]

Return a Series containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

 Let's apply value_counts() on the various columns (eg, deck) of Titanic dataset

0			k.value g value	_	lropna= <mark>False</mark>)
	NaN C B D E A	688 59 47 33 32 15			
	F G	13 4			
	Name:	deck,	dtype:	int64	

 Let's apply value_counts() on the various columns (eg, age) of Titanic dataset

0			e.value_ ng value		ts <mark>(</mark> drop	na=False)
Đ	NaN 24.00 22.00 18.00 28.00 36.50 55.50 0.92 23.50 74.00		77 30 27 26 25 1 1 1 1 1			
		age,	Length:	89,	dtype:	int64

https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

CS 167: Machine Learning

 Let's apply value_counts() on the various columns (eg, embarked) of Titanic dataset

0		ic.embarked.value_counts(dropna=False) ssing values
	S C Q NaN Name:	644 168 77 2 embarked, dtype: int64

 Let's apply value_counts() on the various columns (eg, embark_town) of Titanic dataset

0	<pre>titanic.embark_town.value_counts(dropna=False) #2 missing values</pre>
	Southampton 644 Cherbourg 168 Queenstown 77 NaN 2 Name: embark_town, dtype: int64

• So, here is our results using value_counts()

Column	Num Rows Missing
deck	688
age	177
embarked	2
embark_town	2

• Now with this new information, it's up to us to decide what to do with these missing values

- The steps of cleaning data normally include:
 - Step 1: Identifying which columns have missing data
 - Step 2: Determining how much data is missing in each column

- Step 3: Deciding what to do with the missing data:
 - **drop it:** drop the missing data from the dataset (either col or row)
 - fill it: fill the missing data with a suitable replacement
 - let it be: let it be and cross our fingers

Option 1: Drop it using dropna()

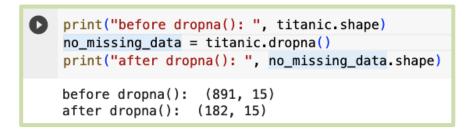
• If there isn't much missing data, and/or you have a very large dataset, dropping the row that includes the missing data is a viable option.

```
print("before: ", titanic.shape)
titanic.dropna()
print("after: ", titanic.shape)
before: (891, 15)
after: (891, 15)
```

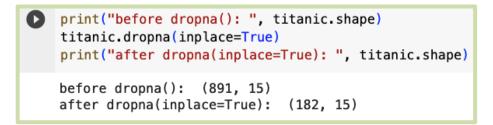
• We know that there's missing data, why didn't the shape change?

Option 1: Drop it using dropna()

- Pandas is trying to protect you, and rather than dropping the rows "in place", it is returning a DataFrame with the rows dropped--as written, we're just not saving it's return. There are two ways to fix this:
 - save what dropna() is returning in a variable



• add the parameter inplace=True to the function call, and it will drop the rows in the original dataset (be careful with this one)



Option 1: Drop it using dropna()

• That's better, but wow, most of our dataset is gone now if we drop all of the rows that have missing data. If this happens to you, you'll probably want to re-load your data to have the full dataset to work with.

if that happens, you'll want to re-run your data loading code: path = '/content/drive/MyDrive/cs167_fall23/datasets/titanic.csv' titanic = pd.read_csv(path)

Option 2: Fill it using fillna()

- If dropping all of the data will make your dataset too sparse, consider filling the missing values with something else.
- What do you think we should use to fill in the missing data in the age column?
 - we probably don't want to throw off our statistics...

ιII															
	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True
5	0	3	male	NaN	0	0	8.4583	Q	Third	man	True	NaN	Queenstown	no	True
6	0	1	male	54.0	0	0	51.8625	S	First	man	True	E	Southampton	no	True

titanic.head(7)

Option 2: Fill it using fillna()

- What do you think we should use to fill in the missing data in the age column?
 - we probably don't want to throw off our statistics...

```
print("before: ", titanic['age'].isna().any())
age_mean = titanic['age'].mean()
titanic['age'].fillna(age_mean, inplace=True)
print("after: ", titanic['age'].isna().any())
titanic.head(7)
```

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	male	22.000000	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.000000	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.000000	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.000000	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0	3	male	35.000000	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True
5	0	3	male	29.699118	0	0	8.4583	Q	Third	man	True	NaN	Queenstown	no	True
6	0	1	male	54.000000	0	0	51.8625	S	First	man	True	Е	Southampton	no	True

Option 3: Let it be

- What's so bad about missing data? Why do we care if some data is missing?
- What happens if we try to do math with NaN? Try it out for yourself:
 - Go to the bottom of the Day05_Missing_Data_Normalization.ipynb and try out

Summary: Missing Data

- The steps of cleaning data normally include:
 - Step 1: Detecting which columns have missing data
 - Step 2: Determining how much data is missing in each column
 - Step 3: Deciding what to do with the missing data:
 - drop it
 - fill it
 - let it be

Summary: Missing Data Functions

- isna(): returns True for any missing data
- notna(): returns True for any data that is not NaN
- any(): returns true if any of the elements in a Series is True
- value_counts(): returns a list of the values in a Series, use dropna=False to see NaN values
- dropna(): drops rows or columns (specify which axis, 1 or 0) that have missing data. Don't forget to either save the result of the call or add inplace=True as a parameter
- fillna(): replaces missing data with a given value (generally 0 or the mean)

Today's Agenda

- Topics:
 - kNN Implementation using Pandas

Missing Data

• Normalization

Normalization

- Normalizing data:
 - rescale attribute values so they're about the same
 - adjusting values measured on different scales to a common scale

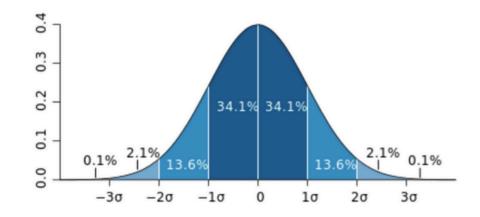
A Simple Normalization:

- One simple method of normalizing data is to replace each value with a proportion relative to the max value.
- For example, the oldest person on the Titanic was 80, so:

age	replaced by
80	80/80 = 1
50	50/80 = 0.625
48	48/80 = 0.6
25	25/80 = 0.3125
4	4/80 = 0.05

Z-Score: Another Normalization Method

- Idea: rather than normalize to proportion of max, normalize based on how many standard deviations they are away from the mean
- Standard Deviation: usually represented as σ (sigma), a kind of 'average' distance from the average value
 - a low standard deviation indicates that the values tend to be close to the mean
 - a high standard deviation indicates that the values are spread out over a wider range



Standard Deviation:

CS 167: Machine Learning

Standard Deviation Calculation

- Standard Deviation: usually represented as σ (sigma), a kind of 'average' distance from the average value
 - Find the mean, represented as μ :**MU**
 - Then, for each number, subtract the mean and square the result
 - Then, find the mean of those squared differences
 - Take the square root of that and we are done

• Let μ be the mean, then standard deviation of x_1 , x_2 ,..., x_N is:

$$\sigma = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_N - \mu)^2}{N}}$$

Corrected Sample Standard Deviation

• **Bessel's correction** says that you should divide by N-1 instead of N when working with a sample (as we usually do in machine learning tasks), and your estimate will be a little less biased.

$$\sigma = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_N - \mu)^2}{N - 1}}$$

Computing the Z-Score

• After computing the corrected sample standard deviation, to normalize, replace each value x_i with it's **Z-Score** based on the mean (μ) and standard deviation (σ) of it's column.

$$Z-score: \frac{x_i-\mu}{\sigma}$$

Computing the Z-Score

- For example: On the Titanic:
 - sex mean(0:male, 1:female): 0.35
 - sex standard deviation: 0.48
 - age mean: 29.7
 - age standard deviation: 13

$$Z-score: \frac{x_i-\mu}{\sigma}$$

	sex	age
example 1	1	50
example 2	0	48

	sex	age
example 1	1	50
example 3	1	25

Z-Score for male: $(0 - 0.35)/0.48 \approx -0.73$ Z-Score for female: $(1 - 0.35)/0.48 \approx 1.35$ Z-Score for age 50: $(50 - 29.7)/13 \approx 1.56$ Z-Score for age 48: $(48 - 29.7)/13 \approx 1.41$ Z-Score for age 25: $(25 - 29.7)/13 \approx -0.36$

Distance Computation Before Normalization

	sex	age
example 1	1	50
example 2	0	48

dist

ance:
$$\sqrt{(1-0)^2 + (50-48)^2} \approx 2.24$$

	sex	age
example 1	1	50
example 3	1	25

distance: $\sqrt{(1-1)^2 + (50-25)^2} = 25$

Distance Computation After Normalization

	sex	age
example 1	1.35	1.56
example 2	-0.73	1.41

$$\begin{array}{c} \text{distance:} \\ \sqrt{(1.35 - -0.73)^2 + (1.56 - 1.41)^2} \\ \approx 2.09 \end{array}$$

	sex	age
example 1	1.35	1.56
example 3	1.35	-0.36

$$\begin{array}{l} \text{distance:} \\ \sqrt{(1.35-1.35)^2+(1.56--0.36)^2} \\ = 1.92 \end{array}$$

Computing the Z-Score on Titanic

 Called on a dataframe, will replace values given in to_replace with value. Let's use this to make the sex column of the dataset numeric.

titanic['sex'] = titanic['sex'].replace(to_replace='female', value=1)
titanic['sex'] = titanic['sex'].replace(to_replace='male', value=0)
titanic.head()

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	0	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	1	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	1	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	1	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0	3	0	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True

Computing the Z-Score on Titanic

 Now that we have the data as 1s and 0s, let's calculate the mean and standard deviation

s_mean = titanic.sex.mean()
s_std = titanic.sex.std()

#replace column with each entry's z-score
titanic.sex = (titanic.sex - s_mean)/s_std
titanic.head()

 $Z - score : \frac{x_i - \mu}{\sigma}$

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	-0.734928	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	1.359146	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	1.359146	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	1.359146	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0	3	-0.734928	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True