
k-Nearest Neighbor (k-NN)
Handling Missing Data

Data Normalization

1CS143: Artificial Intelligence

CS167: Machine Learning

CS 167: Machine Learning

Thursday, February 15th, 2024

• Notebook #2: kNN and Normalization is released today
• due Wednesday 02/21 by 11:59pm
• to submit, download the ipynb file from Colab
• directly upload to CodePost

• Heads up that Quiz #1
• will be released on Tuesday 02/20 after class
• will be due Tuesday 02/27 by 11:59pm

Announcements

CS 167: Machine Learning

https://github.com/alimoorreza/CS167-Notebook-2

• Make sure you change the path to match your Google Drive.
• Load the titanic.csv file from your Google Drive

Before we get started, let's load in our datasets:

CS 167: Machine Learning

• Topics:

Today’s Agenda

CS 167: Machine Learning

• Missing Data

• kNN Implementation using Pandas

• Normalization

CS 167: Machine Learning

3-Nearest Neighbor (3-NN)
• 3-Nearest-Neighbor Algorithm: predict the most commonly appearing class

among the 3 closest training examples
• In other words, k=3

• Let’s assume this subset of Iris has only 2 classes (even number):
Iris-versicolor

Iris-virginica

• What class will a 3NN algorithm predict?

CS 167: Machine Learning

k-Nearest Neighbor (kNN)

• k-Nearest-Neighbor predict the most commonly occurring class of the k
nearest neighbors.

1. Calculate the distance between the new point (e.g. the Iris we would
like to make a prediction on), and the existing training examples.

2. Sort the data by the newly calculated distance so that the nearest
training examples are first

3. Take the top k neighbors:
• if the problem is a classification, take the mode of the target variable to find the most

commonly appearing class and return that as your prediction

• if the problem is a regression, take the average of the target variables for the k closest
neighbors and return that as your prediction

CS 167: Machine Learning

k-NN Implementation in Python/Pandas

• Let's build a 5-Nearest-Neighbor Iris classifier from scratch — using our
Pandas/Python skills:

• To implement this 5NN, we need to do 3 things:

1. Calculate the distances from each of the rows to the new instance

3. Sort the data by these distances

5. Select the k closest training examples and use them to predict the
most commonly occurring class of the closest neighbors.

CS 167: Machine Learning

Step 1: Calculate the Distances

• Let's start by adding a new column to our iris DataFrame that is the
distance from each existing row to the new instance with:

• 5.1 petal length, 7.2 sepal length, 1.5 petal width, and 2.5 sepal width

• The syntax for adding a new column is as follows:
• df['new col name'] = ___________

CS 167: Machine Learning

Step 2: Sort the data by the Distances

• Let's now sort our data using the built in sort_values() function.
[documentation]

• We want to find the nearest k neighbors, so sorting them in ascending
order (which is the default setting for sort_values() will work nicely.

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html

CS 167: Machine Learning

Step 3: Display the most common
species among these 5

• And Viola! We have successfully implemented our first machine learning
model from scratch.

CS 167: Machine Learning

k-NN All Steps

CS 167: Machine Learning

Programming Exercise:

• Rewrite k-NN code so that it's a function.

• Pass the iris measurements (specimen), DataFrame, and k as parameters
and return the predicted class.

CS 167: Machine Learning

Programming Exercise:

• Rewrite k-NN code so that it's a function.

• Pass the iris measurements (specimen), DataFrame, and k as parameters
and return the predicted class.

• Topics:

Today’s Agenda

CS 167: Machine Learning

• Missing Data

• kNN Implementation using Pandas

• Normalization

CS 167: Machine Learning

Missing Data

• Most datasets you will work with will not be in perfect shape
• you'll need to "clean" the data before you can run any machine

learning algorithms on it.

• Missing data is a pretty common thing — so much so that there's a special
value for missing data:
• NaN, or not a number.

CS 167: Machine Learning

Missing Data

• The steps of cleaning data normally include:

• Step 1: Detecting which columns have missing data

• Step 2: Determining how much data is missing in each column

• Step 3: Deciding what to do with the missing data:

• drop it
• fill it
• let it be

CS 167: Machine Learning

Missing Data

• Notice, in the deck column, there are 3 instances of NaN we can see…

• But what about the other 800 or so rows? Do we have to go through and
find them manually?

CS 167: Machine Learning

Step 1: Detecting Missing Data

• In order to identify missing data, we will use a combination of three
Pandas functions:

• isna()
• notna()
• any()

https://pandas.pydata.org/docs/reference/api/pandas.isna.html

https://pandas.pydata.org/docs/reference/api/pandas.notna.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.any.html

https://pandas.pydata.org/docs/reference/api/pandas.isna.html
https://pandas.pydata.org/docs/reference/api/pandas.notna.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.any.html

CS 167: Machine Learning

Step 1: Detecting Missing Data

• Using isna() and notna() to find missing data:

• isna(): will return a boolean series where it is True if the element is NaN

• notna(): will return a boolean series where it is True if the element is not NaN

https://pandas.pydata.org/docs/reference/api/pandas.isna.html

https://pandas.pydata.org/docs/reference/api/pandas.isna.html

CS 167: Machine Learning

Step 1: Detecting Missing Data

• Now, let’s call isna(), and see what we get as an output

CS 167: Machine Learning

Step 1: Detecting Missing Data

• isna() is pretty nifty but there should be better way to summarize this.

• any()

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.any.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.any.html

CS 167: Machine Learning

Step 1: Identifying Missing Data

• Let’s use any() on the call to isna() we just did to let us know
which columns have missing data:

• Several columns are missing data: age, embarked, deck, and embark_town.
• Wouldn't it be great to know how much data is missing in each of those columns?

CS 167: Machine Learning

Missing Data

• The steps of cleaning data normally include:

• Step 1: Identifying which columns have missing data

• Step 2: Determining how much data is missing in each column

• Step 3: Deciding what to do with the missing data:

• drop it
• fill it
• let it be

CS 167: Machine Learning

Step 2: How much data is missing?

• To decide how to handle our missing data, it's important to know how
much missing data each column has:

• If the missing data is a small proportion of the data, we choose to drop those rows
completely from the dataset

• However, if most of the rows are missing data for a specific column, maybe it's a sign
that we don't need to use that column

• There are multiple ways of doing this, but one of the quickest/easiest is
using value_counts()

CS 167: Machine Learning

Step 2: How much data is missing?

• Great, so now that we know which columns are missing data, let's check
to see how much data they are missing using value_counts()

https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

CS 167: Machine Learning

Step 2: How much data is missing?
• Let’s apply value_counts() on the various columns (eg, deck) of

Titanic dataset

https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

CS 167: Machine Learning

Step 2: How much data is missing?
• Let’s apply value_counts() on the various columns (eg, age) of

Titanic dataset

https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

CS 167: Machine Learning

Step 2: How much data is missing?
• Let’s apply value_counts() on the various columns (eg, embarked) of

Titanic dataset

https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

CS 167: Machine Learning

Step 2: How much data is missing?
• Let’s apply value_counts() on the various columns (eg,

embark_town) of Titanic dataset

https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

CS 167: Machine Learning

Step 2: How much data is missing?

• So, here is our results using value_counts()

https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

• Now with this new information, it's up to us to decide what to do with
these missing values

https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

CS 167: Machine Learning

Missing Data

• The steps of cleaning data normally include:

• Step 1: Identifying which columns have missing data

• Step 2: Determining how much data is missing in each column

• Step 3: Deciding what to do with the missing data:

• drop it: drop the missing data from the dataset (either col or row)
• fill it: fill the missing data with a suitable replacement
• let it be: let it be and cross our fingers

CS 167: Machine Learning

Option 1: Drop it using dropna()

• If there isn't much missing data, and/or you have a very large dataset, dropping
the row that includes the missing data is a viable option.

• We know that there's missing data, why didn't the shape change?

CS 167: Machine Learning

Option 1: Drop it using dropna()

• Pandas is trying to protect you, and rather than dropping the rows "in
place", it is returning a DataFrame with the rows dropped--as written,
we're just not saving it's return. There are two ways to fix this:

• save what dropna() is returning in a variable

• add the parameter inplace=True to the function call, and it will drop the rows in
the original dataset (be careful with this one)

CS 167: Machine Learning

Option 1: Drop it using dropna()

• That's better, but wow, most of our dataset is gone now if we drop all of
the rows that have missing data. If this happens to you, you'll probably
want to re-load your data to have the full dataset to work with.

CS 167: Machine Learning

Option 2: Fill it using fillna()

• If dropping all of the data will make your dataset too sparse, consider filling the
missing values with something else.

• What do you think we should use to fill in the missing data in the age column?

• we probably don't want to throw off our statistics...

CS 167: Machine Learning

Option 2: Fill it using fillna()
• What do you think we should use to fill in the missing data in the age

column?
• we probably don't want to throw off our statistics...

CS 167: Machine Learning

Option 3: Let it be

• What's so bad about missing data? Why do we care if some data is missing?

• What happens if we try to do math with NaN? Try it out for yourself:
• Go to the bottom of the Day05_Missing_Data_Normalization.ipynb and

try out

CS 167: Machine Learning

Summary: Missing Data

• The steps of cleaning data normally include:

• Step 1: Detecting which columns have missing data

• Step 2: Determining how much data is missing in each column

• Step 3: Deciding what to do with the missing data:

• drop it
• fill it
• let it be

CS 167: Machine Learning

Summary: Missing Data Functions

• isna(): returns True for any missing data

• notna(): returns True for any data that is not NaN

• any(): returns true if any of the elements in a Series is True

• value_counts(): returns a list of the values in a Series, use dropna=False to see
NaN values

• dropna(): drops rows or columns (specify which axis, 1 or 0) that have missing data.
Don't forget to either save the result of the call or add inplace=True as a
parameter

• fillna(): replaces missing data with a given value (generally 0 or the mean)

• Topics:

Today’s Agenda

CS 167: Machine Learning

• Missing Data

• kNN Implementation using Pandas

• Normalization

CS 167: Machine Learning

Normalization

• Normalizing data:

• rescale attribute values so they're about the same

• adjusting values measured on different scales to a common scale

CS 167: Machine Learning

A Simple Normalization:

• One simple method of normalizing data is to replace each value with a
proportion relative to the max value.

• For example, the oldest person on the Titanic was 80, so:

CS 167: Machine Learning

Z-Score: Another Normalization Method

• Idea: rather than normalize to proportion of max, normalize based on
how many standard deviations they are away from the mean

• Standard Deviation: usually represented as 𝜎(sigma), a kind of 'average'
distance from the average value
• a low standard deviation indicates that the values tend to be close to the mean

• a high standard deviation indicates that the values are spread out over a wider range

CS 167: Machine Learning

Standard Deviation Calculation

• Standard Deviation: usually represented as 𝜎(sigma), a kind of 'average'
distance from the average value

• Find the mean, represented as 𝜇:mu
• Then, for each number, subtract the mean and square the result

• Then, find the mean of those squared differences

• Take the square root of that and we are done

• Let 𝜇 be the mean, then standard deviation of 𝑥1 , 𝑥2,…, 𝑥N is:

CS 167: Machine Learning

Corrected Sample Standard Deviation

• Bessel's correction says that you should divide by 𝑁−1 instead of N when
working with a sample (as we usually do in machine learning tasks), and
your estimate will be a little less biased.

CS 167: Machine Learning

Computing the Z-Score

• After computing the corrected sample standard deviation, to normalize,
replace each value 𝑥𝑖 with it's Z-Score based on the mean (𝜇) and
standard deviation (𝜎) of it's column.

CS 167: Machine Learning

Computing the Z-Score

• For example: On the Titanic:
• sex mean(0:male, 1:female): 0.35
• sex standard deviation: 0.48
• age mean: 29.7
• age standard deviation: 13

CS 167: Machine Learning

Distance Computation Before
Normalization

CS 167: Machine Learning

Distance Computation After
Normalization

CS 167: Machine Learning

Computing the Z-Score on Titanic

• Called on a dataframe, will replace values given in to_replace with
value. Let's use this to make the sex column of the dataset numeric.

CS 167: Machine Learning

Computing the Z-Score on Titanic

• Now that we have the data as 1s and 0s, let's calculate the mean and
standard deviation

