CS167: Machine Learning

Deep Learning Convolutional Neural Network (CNN)

Tuesday, April 16th, 2024

Recap: Multilayer Perceptron (MLP)

• A multilayer perceptron is the simplest type of neural network. It consists of perceptrons (aka nodes, neurons) arranged in layers

Recap: MLP Summary

- MLPs are effective in finding non-linear patterns in the training data
 - can be applied to **regression** or **classification**.
 - backpropagation tunes the weights over a neural network using gradient descent to iteratively reduce the error in the network
 - overfitting the training data is common and is important to avoid
 - the following parameters should be tuned when using MLPs:
 - number of epochs
 - structure of the network (depth, width)
 - activation function
 - eta (learning rate)

Recap: List of PyTorch Functions We Need

• <u>nn.Linear()</u>

creates the dense connections between two adjacent layers (*left layer* and *right layer*) just provide **#neurons_left_layer** and **#neurons_right_layer**

- <u>nn.ReLU()</u>
- <u>nn.Softmax()</u>
- <u>nn.flatten()</u>
- <u>nn.Sequential()</u>
- <u>nn.CrossEntropyLoss()</u>
- torch.optim.SGD

• Let's jump into the notebook for a detailed discussion.

Poll: MLP Summary

• Finish the MLP poll below:

https://forms.gle/ho5ffcRQ9CAF3oBy9

What's Next?

• A multilayer perceptron (MLP) is the simplest type of neural network. It consists of perceptrons (aka nodes, neurons) arranged in layers

• A multilayer perceptron (MLP) is just the tip of the iceberg; plenty of other neural network variants exist.

Today's Agenda

• Deep Learning

- Convolutional Neural Network (CNN)
 - Convolution operation
 - Nonlinearity
 - Pooling operation
 - CNN: convolutional layer + nonlinearity + pooling layer

Deep Learning

Deep learning is a subset of machine learning that relies primarily on neural networks, and most of what is considered AI today is accomplished with deep learning eg,

- recognizing, finding, and enumerating objects in an image
- changing contents of an image
- language translation
- audio/speech translation
- new content generation (eg, computer code, art, music)
- recommendation systems
- autonomous driving
- and numerous others

Traditional Machine Learning Models vs. Deep Learning Models

Traditional machine learning models

- k-Nearest Neighbor (k-NN)
- Decision Trees (DT)
- Random Forests (RF)
- Support Vector Machines (SVM)

Deep learning models

- Multilayer Perceptrons (MLP)
 - simplest
- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)
 - Vanilla RNN, LSTM, GRU
- Transformer
- Generative Adversarial Network (GAN)
- Variational Auto Encoder (VAE)
- Graph Neural Network (GNN)

Traditional Machine Learning Models vs. Deep Learning Models

Deep Learning Models

- Convolutional Neural Network (CNN)
 - good for computer vision (CV) tasks ie, that AI domain that deals with image data understanding
- Recurrent Neural Network (RNN, LSTM, GRU)
 - Good for natural language processing (NLP) tasks, AI domain that deals with textual data understanding
- Transformer
 - rising star DL model; it had its inception in Natural Language Processing domain but is now gradually taking over all other AI domains such as Computer Vision, Audio/Speech, Robotics

Deep Learning Models

• With more data and larger, deeper neural networks (containing more parameters), they tend to learn better, thereby improving performance

Deeper Neural Network

CS 167: Machine Learning (Dr Alimoor Reza)

Deep Learning Frameworks

Deep Learning Frameworks: libraries that make implementing deep learning easier--building models, training them, visualizing the data and training process, saving/loading models, utilizing GPU, etc.

Name	Platform	Written In	Cuda	Parallel Execution	Trained Model	RNN	CNN
Tensorflow	Linux, Window, MacOs, Rasbian, Mobile, Webapp	Python, C++, Cuda	Yes	Yes	Yes	Yes	Yes
Pytorch	Linux, Window, MacOs	Python, C++, Cuda	Yes	Yes	Yes	Yes	Yes
Keras	Linux, MacOs, window	Python	Yes	Yes	Yes	Yes	Yes
Mxnet	Linux, Window, Mac,Mobile, Webapp	C++, Python, R, Julia, Scala, Go, Perl	Yes	Yes	Yes	Yes	Yes
Deeplearning4j	Window, Linux,Mac, Mobile	Java, Scala, Cuda, C++, Perl, Python, Closure	Yes	Yes	Yes	Yes	Yes
Microsoft CNTK	Window, Linux	C++	Yes	Yes	Yes	Yes	Yes

Reference: https://www.kaggle.com/getting-started/156399

CS 167: Machine Learning (Dr Alimoor Reza)

Today's Agenda

• Deep Learning

- Convolutional Neural Network (CNN)
 - Convolution operation
 - Nonlinearity
 - Pooling operation
 - CNN: convolutional layer + nonlinearity + pooling layer

• A convolutional neural network that applies convolutional filters on gridlike input such as a image

- Image data is represented as a twodimensional grid of pixels, either grayscale (monochromatic) or color (RBG)
 - each pixel corresponds to one or multiple numeric values: if it's grayscale, it is one number, if it's color, it corresponds to 3 numbers (a red, a green and a blue value)

Red channel

Green channel

Blue channel

• A convolutional neural network that applies convolutional filters on gridlike input such as a image

• A convolutional neural network that applies convolutional filters on gridlike input such as a image

- In order to capture the local dependence of images, we use **convolutional filters**. A convolutional filter, aka kernel:
 - is smaller than the input data (usually 3x3 or 5x5 or 7x7)
 - uses dot product multiplication between a piece of the input that is the size of the filter and the filter
 - scans over the image from the upper left to the bottom right

- What does a **convolution operation** do?
- In an ideal **convolution operation**, a kernel is "flipped" (horizontally and vertically) and then it is applied through the image (from left to right, and top to bottom)

• What does a convolution operation do?

			0	0	0	0	0	0	0	0	0	0										
			0	0	0	0	0	0	0	0	0	0		0	10	20	30	30	30	20	10	
			0	0	0	90	90	90	90	90	0	0		0	20	40	60	60	60	40	20	
1/9	1/9		0	0	0	90	90	90	90	90	0	0		0	30	60	90	90	90	60	30	
1/9	1/9	×	0	0	0	90	90	90	90	90	0	0		0	30	50	80	80	90	60	30	
1/9	1/9	•	0	0	0	90	0	90	90	90	0	0		0	30	50	80	80	90	60	30	
			0	0	0	90	90	90	90	90	0	0		0	20	30	50	50	60	40	20	
			0	0	0	0	0	0	0	0	0	0		10	20	30	30	30	30	20	10	
			0	0	90	0	0	0	0	0	0	0		10	10	10	0	0	0	0	0	
			0	0	0	0	0	0	0	0	0	0										

H

1/9

1/9

1/9

kernel of size 3x3 units

F'

image of 10x10 units

convolved result of 10x10 units

- What does a **convolution operation** do?
- convolution operation can be achieved with a series of dot products between portions of input feature map and a convolution filter (kernel) weights

Another visualization shows a yellow convolution filter applied to a green image, resulting in the convolved feature

CS 167: Machine Learning (Dr Alimoor Reza)

- What does a convolution operation do?
- convolution operation can be achieved with a series of dot products between portions of input feature map and a convolution filter (kernel) weights

2 + 10 + 4 + 26 + 100 + 30 + 8 + 12 + 6 = 198

- Convolution operation falls within a more general form operation call linear-filtering
 - replace each pixel by a linear-combination of its neighbors

Group Exercise

• find the result of the convolution operation below

K	erne	el		In	nage	е	
0	-1	0		2	2	2	
-1	5	-1	*	2	3	2	
0	-1	0		2	2	2	
к	e						
0	-1	0		2	2	2	
0 -1	-1 5	0 -1	*	2 2	2	2	

• A **convolutional neural network (CNN)** is a neural network with specialized connectivity structure

• Every layer of a CNN transforms the <u>input volume</u> to an <u>output volume</u> of neuron activations. The red input layer holds the image, so its width and height would be the dimensions of the image, and the depth would be 3 (Red, Green, Blue channels)

- Weights correspond to the filter (kernel) values
- Convolutional neural network can learn their own filters!
 - We do not need to provide the values inside the kernel

CNN: How to calculate the output volume size?

CS 167: Machine Learning (Dr Alimoor Reza)

CNN: How to calculate the output volume size?

- An input volume has size (*WxWx3*), eg, (227, 227, 3)
- Filter size/receptive field is (FxF), eg, (11x11)
- Spatial Stride **S**, eg, **S**=4
- Padding size *P*, eg, *P*=0
- Number of filters *K*, eg, *K*=96

(W - F + 2P)

S

output

volume width/

height

CS 167: Machine Learning (Dr Alimoor Reza)

How to calculate the output volume size?

- An input volume has size (W₁ x H₁ x D₁)
 - Filter size/receptive field is (FxF)
 - Spatial stride size **S**
 - Padding size **P**
 - Number of filters *K*
- Spatial sizes of the output volume (W₂ x H₂ x D₂)

$$W_2 = \frac{(W_1 - F + 2P)}{S} + 1$$

 $H_2 = \frac{(H_1 - F + 2P)}{S} + 1$

$$D_2 = K$$

- Number of filter weight parameters = (F x F x D₁) x K
- Number of bias parameters = K

Group Exercise

- What will the size of the output of the following convolution be?
 - (5x5x1) * (3x3)

2	4	9	1	4		1	2	
2	1	4	4	0	-	'	2	5
1	1	2	9	2	*	-4	7	4
7	3	5	1	3		2	-5	1
2	3	4	8	5		F	Filter	/
	I	mage	е			r	Verne	91

Today's Agenda

• Deep Learning

- Convolutional Neural Network (CNN)
 - Convolution operation
 - Nonlinearity
 - Pooling operation
 - CNN: convolutional layer + nonlinearity + pooling layer

Nonlinear Function

• Just like an MLP, each convolutional output goes through a non-linear function such as Sigmoid, Tanh, or Rectified Linear Unit (ReLU)

$$convolution = 1*1 + 1*0 + 1*1 + 0*0 + 1*1 + 1*0 + 0*1 + 0*0 + 1*1 = 4$$

Today's Agenda

• Deep Learning

- Convolutional Neural Network (CNN)
 - Convolution operation
 - Nonlinearity
 - Pooling operation
 - CNN: convolutional layer + nonlinearity + pooling layer

Pooling Operation

- Image data can get computationally inefficient, really quickly. To avoid this, we often toss in a layer that helps us to **summarize** and **downsample** the data
- In classical CNN, we find another useful operation called **pooling operation**
- A common pooling operation is **max pooling**, and its goal is to locally summarize the convolution. It performs something like a convolution, but rather than taking the dot product, it takes the maximum element in the filter area

Pooling Operation

- Pooling operation downsamples the volume spatially, independently in each depth slice of the input volume
- Besides max pooling, other pooling operations include: sum pooling, average pooling

Today's Agenda

• Deep Learning

- Convolutional Neural Network (CNN)
 - Convolution operation
 - Nonlinearity
 - Pooling operation
 - CNN: convolutional layer + nonlinearity + pooling layer

CNN: A Composition of Convolutional Layers

- We've talked about **image data**, **convolutions**, **nonlinearity**, **max pooling**, and how they are related to some computer vision tasks. Let's connect the dots
 - input is an image (in this case a color image, so 3 channels-red, green, and blue)
 - there are several filters, not just one.
 - Conv2D layers with ReLU are often followed by maxpool
 - towards the end of the model, we switch to fully connected (Dense) layer
 - We have as many output nodes as we have classes to predict

Reference

CS 167: Machine Learning (Dr Alimoor Reza)