CS167: Machine Learning

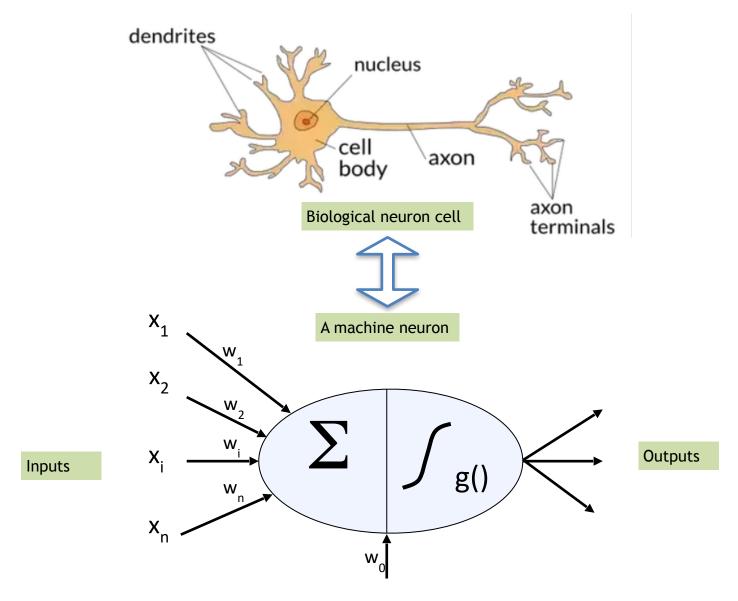
PyTorch Basics A Simple Implementation of Multilayer Perceptron (MLP) with PyTorch

Tuesday, April 8th, 2024

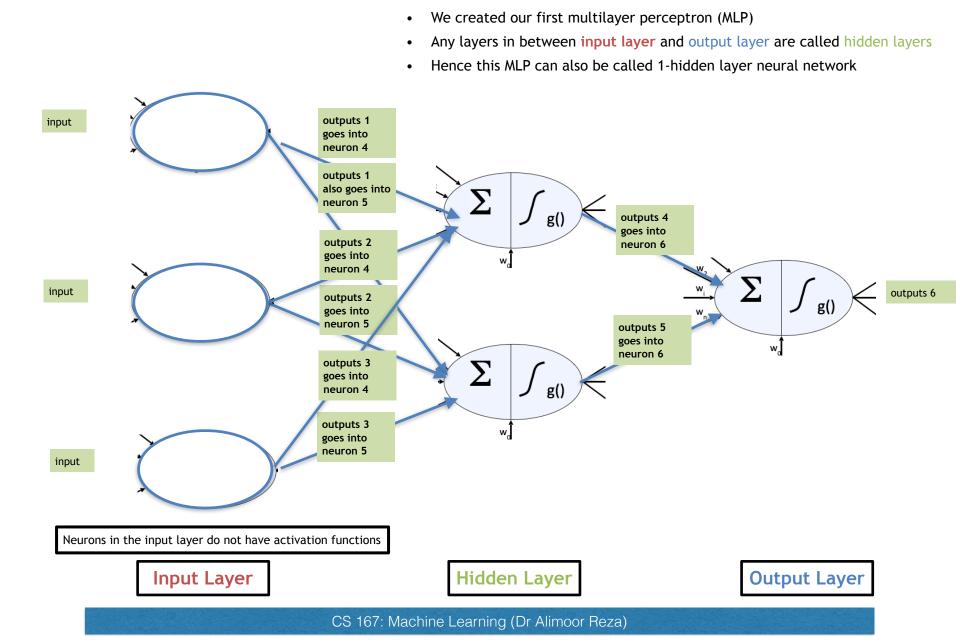
Recap

- Biological Inspiration to Connect Neurons
- Multilayer Perceptrons (MLP)
- MLP Structure
- Learning MLP Weight Parameters

Recap: Inspiration from Neuron Cells

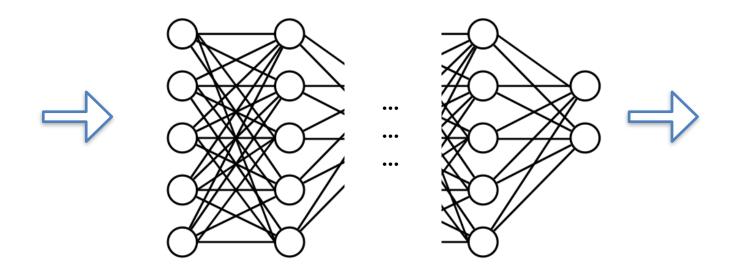


Recap: 1-Hidden Layer Neural Network



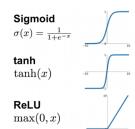
Recap: MLP (Network) Structure

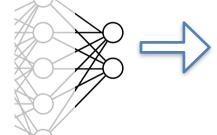
- Each of these questions need to be answered before you set up your neural network:
 - how many hidden layers should I have? (depth)
 - how many neurons should be in each layer? (width)
 - what should your activation be at each of the layers?



Recap: Final Output Nodes

• In general, the complexity of your network should match the complexity of your problem. The final output nodes should be related to what kind of problem you are solving





Activation Function	Function	Lower bound	Upper bound	Type of Machine Learning
Linear	f(z) = az	-∞	00	regression where results can be negative
Rectified Linear Unit (ReLU)	$relu(z) = max \\ (0, z)$	0	00	regression where results can't be negative
Sigmoid	sigmoid (z) = $\frac{1}{1+e^{-z}}$	0	1	binary classification
Softmax	$softmax$ (z_i) $= \frac{exp(z_i)}{\sum_j exp(z_j)}$	0	1	multiclass classification

CS 167: Machine Learning (Dr Alimoor Reza)

Recap: Training to Learn MLP (Network) Structure Parameters

- The specific name for the weight learning algorithm is **Backpropagation**. It is glorified name but it is gradient descent under the hood.
- It tunes **the weights** over a neural network using **gradient descent** to iteratively reduce the error in the network.

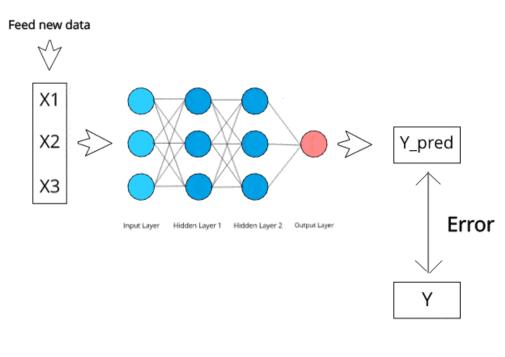


Image reference

CS 167: Machine Learning (Dr Alimoor Reza)

Today's Agenda

- PyTorch Basics
- Simple Multilayer Perceptrons (MLP) Implementation using PyTorch

PyTorch

- PyTorch is machine learning framework based on Torch library. It has a Python interface.
- This is a very popular framework for building and deploying deep learning application including MLP, and other future models we will learn about in this course
- Colab and Kaggle both has PyTorch support hence we can readily run our PyTorch code without worrying about the installation. But optionally, if you have GPU in your workstation (laptop/desktop), you can install a fresh copy of PyTorch there.

https://pytorch.org/

PyTorch

• Go to Blackboard and work on the notebook titled "PyTorch Basics."

i≡ _⊙ √	18: PyTorch Basics and MLP code /isible to students • day, April 9th, 2024
(-)	Notebook: PyTorch Basics Visible to students *
Ċ	Notebook: Building a Very Simple MLP using PyTorch Library

https://pytorch.org/

PyTorch

• Upload your notebook to Blackboard (under 'Assignment' section) once completed!

 Notebook 0 : Onboarding Due date: 2/1/24, 11:59 PM
 Visible to students *
 In-class activity#8 - PyTorch basics Due date: 4/9/24, 11:59 PM
 Visible to students * upload your notebook
 In-class activity#7 (Stochastic Gradient Descent - SGD) Due date: 4/2/24, 11:59 PM
 Visible to students * Complete the group activity from class today and upload your notebook. Here is the reference notebook: https://github.com/alimoorreza/C5167-sp24-notes/blob/main/ Day16_Stochastic_Gradient_Descent_SGD.jpynb

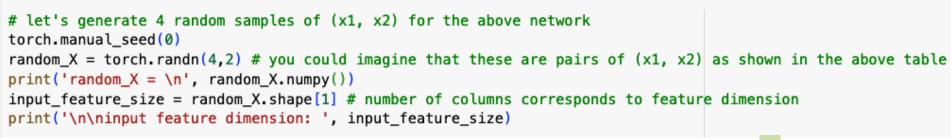
https://pytorch.org/

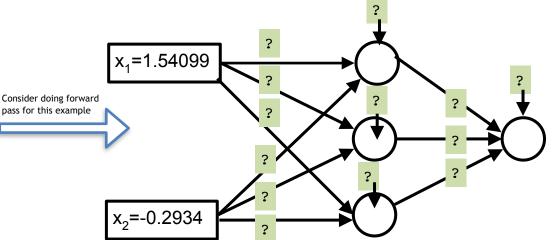
Today's Agenda

- PyTorch Basics
- Simple Multilayer Perceptrons (MLP) Implementation using PyTorch

Generate Random Samples for the MLP Below

• A **multilayer perceptron** is the simplest type of neural network. It consists of perceptrons (aka nodes, neurons) arranged in layers

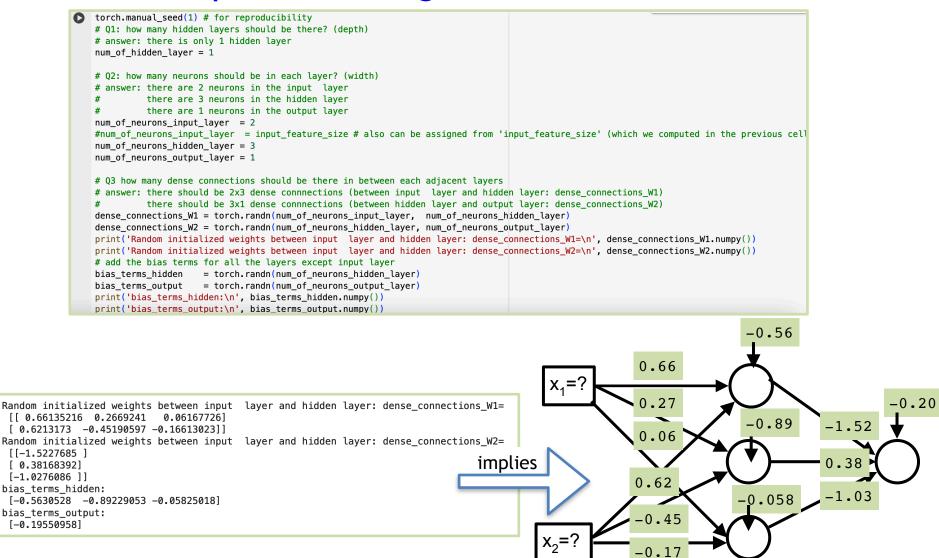




Sample#	X 1	X2
1	1.5409961	-0.2934289
2	-2.1787894	0.56843126
3	-1.0845224	-1.3985955
4	0.40334684	0.83802634

- Each of these questions need to be answered before you set up your **multilayer perceptron**
 - Q1: how many hidden layers should be there? (depth)
 - Q2: how many neurons should be in each layer? (width)
 - Q3: how many dense connections should be there in between each adjacent layers
 - Q4: what should the activation be at each of the intermediate layers?
 - sigmoid(), tanh(), rectified-linear-unit(), etc
 - Q5: what should be activation of the final layer
 - depends the task classification (sigmoid(), softmax()) vs. regression

```
torch.manual_seed(1) # for reproducibility
       # Q1: how many hidden layers should be there? (depth)
        # answer: there is only 1 hidden layer
       num of hidden layer = 1
        # Q2: how many neurons should be in each layer? (width)
        # answer: there are 2 neurons in the input layer
                           there are 3 neurons in the hidden layer
        #
                           there are 1 neurons in the output layer
        #
       num_of_neurons_input_layer = 2
       #num_of_neurons_input_layer = input_feature_size # also can be assigned from 'input_feature_size' (which we computed in the previous cell
        num_of_neurons_hidden_layer = 3
        num_of_neurons_output_layer = 1
        # Q3 how many dense connections should be there in between each adjacent layers
       # answer: there should be 2x3 dense connections (between input layer and hidden layer: dense connections W1)
                           there should be 3x1 dense connections (between hidden layer and output layer: dense_connections_W2)
       dense_connections_W1 = torch.randn(num_of_neurons_input_layer, num_of_neurons_hidden_layer)
        dense connections W2 = torch.randn(num of neurons hidden layer, num of neurons output layer)
        print('Random initialized weights between input layer and hidden layer: dense_connections_W1=\n', dense_connections_W1.numpy())
       print('Random initialized weights between input layer and hidden layer: dense connections W2=\n', dense connections W2=\n'
       # add the bias terms for all the layers except input layer
        bias terms hidden = torch.randn(num of neurons hidden layer)
        bias_terms_output
                                                 = torch.randn(num_of_neurons_output_layer)
        print('bias_terms_hidden:\n', bias_terms_hidden.numpy())
        print('bias terms output:\n', bias terms output.numpy())
                                        Random initialized weights between input layer and hidden layer: dense_connections_W1=
                                           [[ 0.66135216 0.2669241 0.06167726]
                                          \begin{bmatrix} 0.6213173 & -0.45190597 & -0.16613023 \end{bmatrix}
                                         Random initialized weights between input layer and hidden layer: dense_connections_W2=
                                          [[-1.5227685]
                                           [ 0.38168392]
                                          [-1.0276086 ]]
                                         bias terms hidden:
                                          [-0.5630528 -0.89229053 -0.05825018]
                                         bias_terms_output:
                                           [-0.19550958]
```

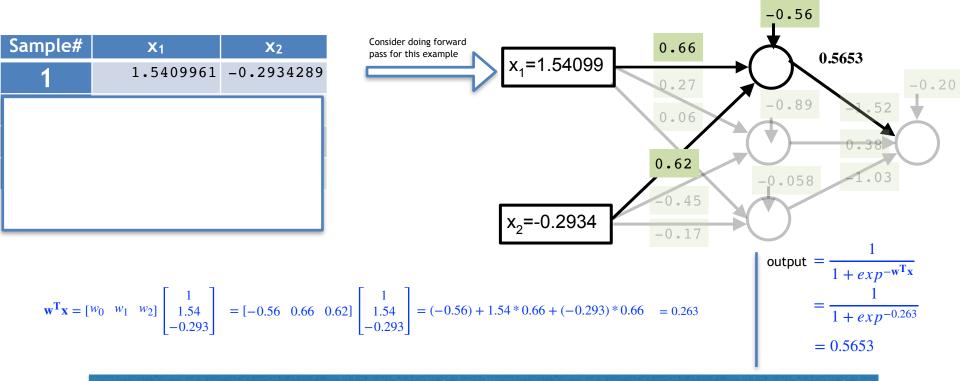


```
torch.manual_seed(1) # for reproducibility
    # Q1: how many hidden layers should be there? (depth)
    # answer: there is only 1 hidden layer
    num_of_hidden_layer = 1
    # Q2: how many neurons should be in each layer? (width)
    # answer: there are 2 neurons in the input laver
              there are 3 neurons in the hidden laver
    #
              there are 1 neurons in the output layer
    num_of_neurons_input_layer = 2
    #num_of_neurons_input_layer = input_feature_size # also can be assigned from 'input_feature_size' (which we computed in the previous cell
    num_of_neurons_hidden_layer = 3
    num_of_neurons_output_layer = 1
    # Q3 how many dense connections should be there in between each adjacent layers
    # answer: there should be 2x3 dense connections (between input layer and hidden layer: dense_connections_W1)
              there should be 3x1 dense connections (between hidden layer and output layer: dense_connections_W2)
    #
    dense_connections_W1 = torch.randn(num_of_neurons_input_layer, num_of_neurons_hidden_layer)
    dense_connections_W2 = torch.randn(num_of_neurons_hidden_layer, num_of_neurons_output_layer)
```

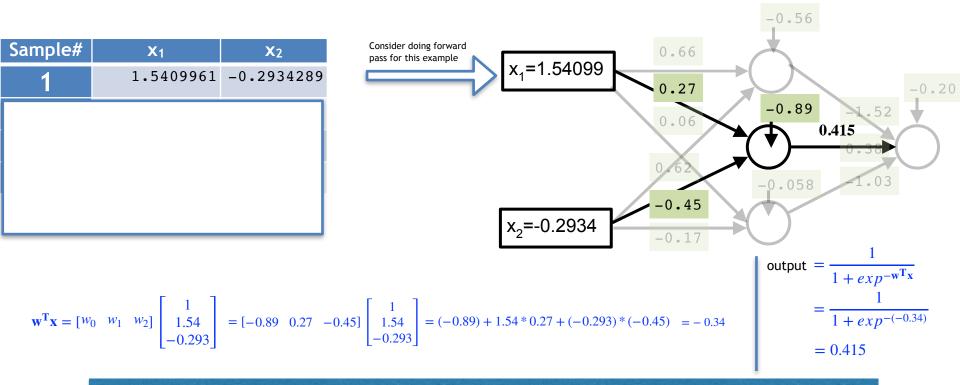
[21] # Q4: what should the activation be at each of the intermediate layers? # answer: let use sigmoid() activation function in the hidden layer sigmoid_activation_hidden = nn.Sigmoid()

[22] # Q5: what should be activation of the final layer (let's assume we are using a binary classification task for which sigmoid ctivation is sigmoid_activation_output = nn.Sigmoid()

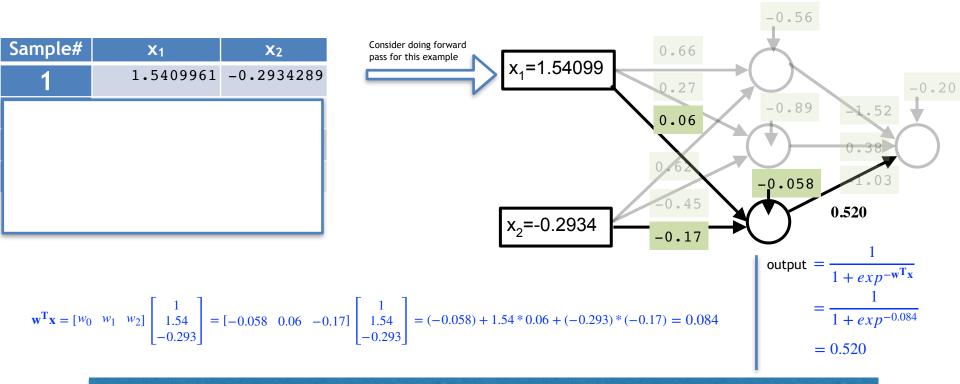
- Each neuron contains two operations:
 - a dot product between <u>a weight vector (edges in the graph)</u> and <u>an input vector</u>, which produces a number
 - Then, that number through an activation function, which produces a number as an output
- We can collective do all these dot products in a single layer using a single matrix-matrix multiplication <u>torch.matmul()</u> as follows.
- Also add the bias-term after computing the matrix multiplication



- Each neuron contains two operations:
 - a dot product between <u>a weight vector (edges in the graph)</u> and <u>an input vector</u>, which produces a number
 - Then, that number through an activation function, which produces a number as an output
- We can collective do all these dot products in a single layer using a single matrix-matrix multiplication <u>torch.matmul()</u> as follows.
- Also add the bias-term after computing the matrix multiplication



- Each neuron contains two operations:
 - a dot product between <u>a weight vector (edges in the graph)</u> and <u>an input vector</u>, which produces a number
 - Then, that number through an activation function, which produces a number as an output
- We can collective do all these dot products in a single layer using a single matrix-matrix multiplication <u>torch.matmul()</u> as follows.
- Also add the bias-term after computing the matrix multiplication

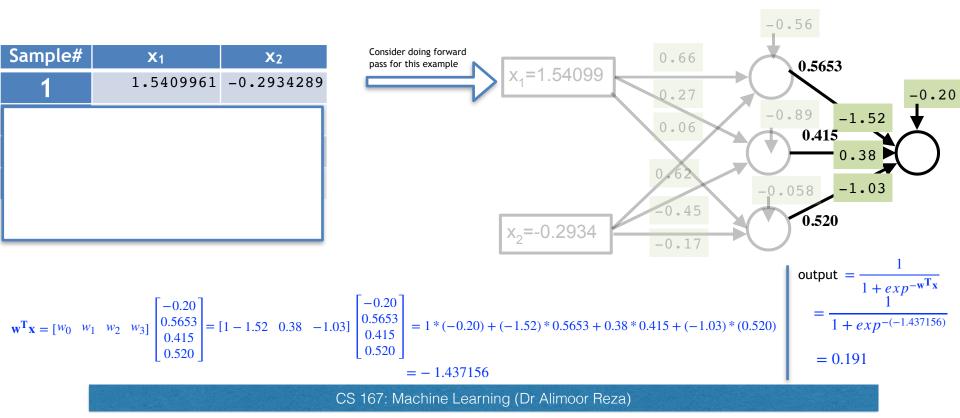


- Each neuron contains two operations:
 - a dot product between <u>a weight vector (edges in the graph)</u> and <u>an input vector</u>, which produces a number
 - Then, that number through an activation function, which produces a number as an output
- We can collective do all these dot products in a single layer using a single matrix-matrix multiplication <u>torch.matmul()</u> as follows.
- Also add the bias-term after computing the matrix multiplication

matrix_mult_X_and_W1 = torch.matmul(random_X[0,:], dense_connections_W1) + bias_terms_hidden print('hidden layer input vector and weight vector dot products: \n', matrix_mult_X_and_W1.numpy()) output_hidden_layer = sigmoid_activation_hidden(matrix_mult_X_and_W1) print('output of hidden layer: \n', output_hidden_layer.numpy())

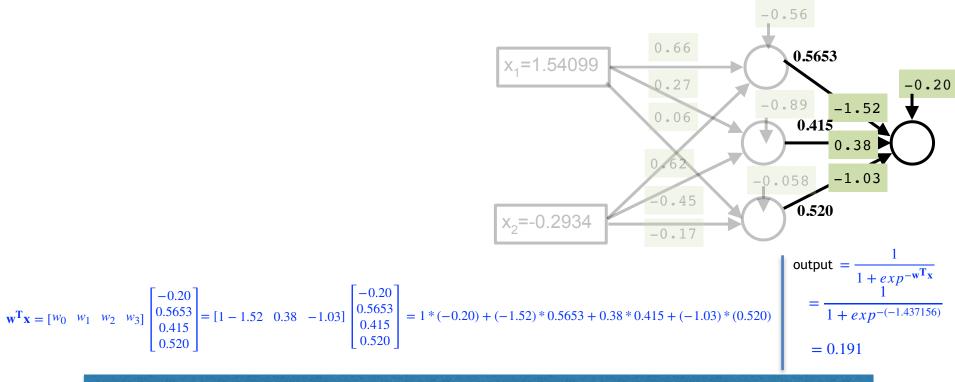
hidden layer input vector and weight vector dot products: [0.27377588 -0.3483593 0.08554165] output of hidden layer: [0.5680196 0.41378036 0.5213724]

- Each neuron contains two operations:
 - a dot product between <u>a weight vector (edges in the graph)</u> and <u>an input vector</u>, which produces a number
 - Then, that number through an activation function, which produces a number as an output
- We can collective do all these dot products in a single layer using a single matrix-matrix multiplication <u>torch.matmul()</u> as follows.
- Also add the bias-term after computing the matrix multiplication



matrix_mult_hidden_and_W2 = torch.matmul(output_hidden_layer, dense_connections_W2) + bias_terms_output print('output of output layer: \n', matrix_mult_hidden_and_W2) final_output = sigmoid_activation_output(matrix_mult_hidden_and_W2) print('output of hidden layer: \n', final_output.numpy())

output of output layer: tensor([-1.4383]) output of hidden layer: [0.1918079]



```
CS 167: Machine Learning (Dr Alimoor Reza)
```

Next lecture: Modular Code Multilayer Perceptron using MLP

• A multilayer perceptron is the simplest type of neural network. It consists of perceptrons (aka nodes, neurons) arranged in layers

