
Random Forest

1CS143: Artificial Intelligence

CS167: Machine Learning

CS 167: Machine Learning

Tuesday, March 19th, 2024

• Notebook #4: scikit library with wine quality

• Due tonight 03/19 by 11:59pm

• To submit, download the ipynb file from Colab

Announcements

CS 167: Machine Learning

https://github.com/alimoorreza/CS167-SP24-Notebook-4

Today’s Agenda

CS 167: Machine Learning

• Random Forest

• Warm-Up Exercise

• Random Forest Implementation using sklearn

CS 167: Machine Learning

Review of the Scikit Learn 'Algorithm'

• When working in Scikit Learn (sklearn), there is a general pattern
that we can follow to implement any supported machine learning
algorithm. It goes like this:

• Load your data using pd.read_csv()

• Split your data train_test_split()

• Create your classifier/regressor object

• Call fit() to train your model

• Call predict() to get predictions

• Call a metric function to measure the performance of your model

• Make a copy of today’s Notebook

• Day12_Random_Forests

• Make sure you change the path to match your Google Drive location

• Load the breast-cancer-wisconsin-data.csv file

Warm-up Exercise

CS 167: Machine Learning

https://github.com/alimoorreza/CS167-sp24-notes/blob/main/Day12_Random_Forests.ipynb

• Finish the rest

Warm-up Exercise

CS 167: Machine Learning

Today’s Agenda

CS 167: Machine Learning

• Random Forest

• Warm-Up Exercise

• Random Forest Implementation using sklearn

Ensemble Learning

CS 167: Machine Learning

• The 'ask the audience' models:

Ensemble Learning

CS 167: Machine Learning

• The 'ask the audience' models:

Ensemble Learning

CS 167: Machine Learning

• Ensemble Learning:

• using multiple learners/hypotheses for coming up with predictions -
often performs better than using one algorithm alone

• Like crowdsourcing different machine learning models to come up with
a consensus

Forest Data Structure

CS 167: Machine Learning

• Tree: a common data structure that simulates a hierarchical tree
structure, with a root value and subtrees of children with a parent node,
represented as a set of liked nodes.

• Forest: is a collection of trees

Random Forest

CS 167: Machine Learning

• Big Idea: A large number of relatively uncorrelated models (trees)
operating as a committee will outperform any of the individual
constituent models.

Random Forest

CS 167: Machine Learning

• Random Forest is an effective learning algorithm that uses an ensemble
of decision trees

• Basic idea: build a bunch of decision trees and have them vote on the
prediction

Random Forest

CS 167: Machine Learning

• Basic idea: build a bunch of decision trees and have them vote on the
prediction

How to create different trees?

CS 167: Machine Learning

• The power of a diverse portfolio:

• Just like how we want investments (e.g. stock portfolios) to be diverse…

• Low correlation amongst investments cause stability and reliability

• Don’t put all of your money in one industry

• Uncorrelated models can produce ensemble predictions that are more
accurate than any of the individual predictions

• As long as the trees don’t consistently err in the same direction

What Random Forests Need?

CS 167: Machine Learning

• There needs to be some actual signal in our features so that models built using
those features do better than random guessing

• The predictions (and therefore the errors) made by the individual trees need to
have low correlations with each other

• Need to set up the trees so they all don’t make the same mistakes

• How can we do this?

• Introduce some randomness …

How to introduce Randomness?

CS 167: Machine Learning

•Bagging:

• What data is used for the training sets?

•Feature subset selection:

• Now the trees are split?

Full training set

Random “bag”

Full feature set

Subset of subset

Sampling

CS 167: Machine Learning

• Sample with replacement:

• allow each instance to be picked more than once

Bagging: Bootstrapping Aggregation

CS 167: Machine Learning

• Decisions trees are very sensitive to the data they are trained on

• small changes to the training set can result in significantly different tree

structures.

• Bagging (Bootstrap Aggregation)

• allow each individual tree to randomly sample from the dataset with

replacement, resulting in different trees.

Bagging: Bootstrapping Aggregation

CS 167: Machine Learning

• Notice that with bagging we are not subsetting the training data into smaller chunks

• Rather, if we have a sample of size N, we are still feeding each tree a training
set of size N (unless specified otherwise)

• Instead of the original training data, we take a random sample of size N with
replacement

Bagging: Bootstrapping Aggregation

CS 167: Machine Learning

• Example

• training data was [1, 2, 3, 4, 5, 6]

• then we might give one of our trees the following list [1, 2, 2, 3, 6, 6]

• both lists are of length six and that 2 and 6 are both repeated in the randomly
selected training data we give to our tree (because we sample with replacement)

Feature Randomness

CS 167: Machine Learning

• Random Forests algorithm also uses a random subset of the features for each tree

• the size of these subsets should also be tweaked for optimal performance

• Usually, 𝐵 is the number of trees and m is the number of features in each tree

• These are parameters in the algorithm that need to be tuned for each dataset for
optimal performance

• side benefit: features that are utilized by more trees must be important - you can find
out which things the learning algorithm thinks are important

Random Forest

CS 167: Machine Learning

• In our random forest, we end up with trees that are not only trained on
different sets of data (thanks to bagging) but also use different features
to make decisions

• A large number of relatively uncorrelated models (trees) operating as a
committee will outperform any of the individual constituent models

Random Forest Application in a Computer Vision
Research Paper

CS 167: Machine Learning

Random Forest Application in a Computer Vision
Research Paper

CS 167: Machine Learning

Today’s Agenda

CS 167: Machine Learning

• Random Forest

• Warm-Up Exercise

• Random Forest Implementation using sklearn

Random Forest

CS 167: Machine Learning

• Start working on the class notebook. Look at the code below for decision
tree

Random Forest

CS 167: Machine Learning

• Start working on the class notebook. Now, here is the code for random
forest. They are very similar in structure.

Group Exercise #1

CS 167: Machine Learning

• Look at RandomForestClassifer Documentation here

• What is the default number of trees?

• How does increasing or decreasing the number of trees affect accuracy?

• What is the parameter to change to affect the number of features used?

• How does increasing or decreasing the number of features affect accuracy?

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fscikit-learn.org%2Fstable%2Fmodules%2Fgenerated%2Fsklearn.ensemble.RandomForestClassifier.html

Random Forest

CS 167: Machine Learning

• Random Forests are an effective learning algorithm that uses an
ensemble of decision trees

• Basic idea: build a bunch of decision trees and have them vote on the
prediction

Random Forest

CS 167: Machine Learning

• Basic idea: build a bunch of decision trees and have them vote on the
prediction

Feature Importance

CS 167: Machine Learning

• Because we are building so many small decision trees in a random forest,
we have the added benefit of being able to see what features are most
commonly used as high information gain features. The code below shows
how we can plot the 'Feature Importance' chart for a random forest

• In this particular run, it looks like fractal_dimension_worst and
symmetry_worst were the two most important features, but there were a
handful of others that were important as well

Feature Importance

CS 167: Machine Learning

Feature Importance

CS 167: Machine Learning

Tuning our Forest

CS 167: Machine Learning

• How can we tell how many trees to use?

• What about how many features to include in our trees?

• We can tune our random forest to find the best values of model

parameters:

Tuning our Forest

CS 167: Machine Learning

• How can we tell how many trees to use?

• What about how many features to include in our trees?

• We can tune our random forest to find the best values of model

parameters:

Tuning our Forest

CS 167: Machine Learning

• It looks like whether we are using small numbers of trees or large ones, the accuracy stays about
the same. It appears at least sometimes that Random Forest doesn't take a lot of tuning of the
number of trees.

• How can we tell how many features to be used with each tree?

Tuning our Forest

CS 167: Machine Learning

• Note that the above could be subject to changes based on the initial random_state.

• For this data, which is apparently very easy to learn on (accuracy is very high), the

number of features used with each tree also didn't matter much when used with an
ensemble of 10 trees. This is probably something worth tuning if you have a lot of
features, especially if many of them might not be very relevant.

Group Exercise #3

CS 167: Machine Learning

• Look at RandomForestClassifer Documentation here

• Apply random forest to the wine dataset winequality-white.csv from
Notebook #4

• Can you get an 𝑅2 score above 0.575 using
RandomForestRegressor(random_state=31) (and other arguments)?

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fscikit-learn.org%2Fstable%2Fmodules%2Fgenerated%2Fsklearn.ensemble.RandomForestClassifier.html

