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Announcements

 Notebook #4: scikit library with wine quality

* Due tonight 03/19 by 11:59pm

« To submit, download the ipynb file from Colab
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https://github.com/alimoorreza/CS167-SP24-Notebook-4

Today’s Agenda

« Warm-Up Exercise
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Review of the Scikit Learn 'Algorithm’

« When working in Scikit Learn (sklearn), there is a general pattern
that we can follow to implement any supported machine learning
algorithm. It goes like this:

* Load your data using pd.read csv()

* Split your data train test split()

» Create your classifier/regressor object

« Call £it () to train your model

* Call predict () to get predictions

 Call a metric function to measure the performance of your model
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Warm-up Exercise

« Make a copy of today’s Notebook
 Day12 Random_Forests

« Make sure you change the path to match your Google Drive location

* Load the breast-cancer-wisconsin-data.csv file

from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score

from sklearn.metrics import confusion_matrix

from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt

import pandas as pd

target = "diagnosis"
predictors = data.columns.drop(target) #gets all of the columns except the target

train_data, test_data, train_sln, test_sln = train_test_split(datalpredictors], datal[target], test_size = 0.2, random_state=41)
print('Target column unique values: ', datal[target]l.unique()) # M: Malignant and B: Benign
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https://github.com/alimoorreza/CS167-sp24-notes/blob/main/Day12_Random_Forests.ipynb

Warm-up Exercise

* Finish the rest

[ ] # Step 1: Build a Decision Tree
# Step 2: Normalize your data
# Step 3: Try using a decision tree on your normalized data

# Step 4: Print out the confusion matrix for your model
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Today’s Agenda

e Random Forest
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Ensemble Learning

e The 'ask the audience' models:

/ Which computer program included in Microsoft Office
Q is primarily used to create spreadsheets?

Outlook \\ - B: PowerPoint

Word N Excel
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Ensemble Learning

e The 'ask the audience' models:

[ 1% 0% 2% 97%

_—

| A B D

Which computer program included in Microsoft Office
is primarily used to create spreadsheets? /

Outlook \,.\". PowerPoint

. C: Word \\F Excel
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Ensemble Learning

 Ensemble Learning:

» using multiple learners/hypotheses for coming up with predictions -
often performs better than using one algorithm alone

» Like crowdsourcing different machine learning models to come up with
a consensus
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Forest Data Structure

Tree: a common data structure that simulates a hierarchical tree
structure, with a root value and subtrees of children with a parent node,
represented as a set of liked nodes.

A general tree structure

internal ° €— root node

(split) node

Forest: is a collection of trees

101|11||12(|13]||14

| terminal (leaf) node
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Random Forest

e Big Idea: A large number of relatively uncorrelated models (trees)
operating as a committee will outperform any of the individual

constituent models.
ED B3 0|
Vo B
Predict 1 Predict 0 Predict 1
o
Bk e
Predict 1 Predict 1 Predict 0
Predict 1 Predict 1 Predict 0

Tally: Six 1s and Three Os
Prediction: 1

Visualization of a Random Forest Model Making a Prediction
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Random Forest

« Random Forest is an effective learning algorithm that uses an ensemble
of decision trees

e Basic idea: build a bunch of decision trees and have them vote on the
prediction

Instance
Random Forest Sl B
e o Y B
P, ;/'\fK 3
- N e
/ / P\\/\’ \ \ \ ,q}»\ / \ \\
60806060 dOEL DD 040 d0dd
Tree-1 Tree-2 Tree-n
Class-A Class-B Class-B

Majority-Voting }

Final-Class
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Random Forest

e Basic idea: build a bunch of decision trees and have them vote on the

prediction
Input feature vector f
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How to create different trees?

» The power of a diverse portfolio:
» Just like how we want investments (e.g. stock portfolios) to be diverse...
e Low correlation amongst investments cause stability and reliability
e Don’t put all of your money in one industry

e Uncorrelated models can produce ensemble predictions that are more
accurate than any of the individual predictions

» As long as the trees don’t consistently err in the same direction
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What Random Forests Need?

» There needs to be some actual signal in our features so that models built using
those features do better than random guessing

« The predictions (and therefore the errors) made by the individual trees need to
have low correlations with each other

e Need to set up the trees so they all don’t make the same mistakes

e How can we do this?
e Introduce some randomness ...
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How to introduce Randomness?

e Bagging:

 What data is used for the training sets?

Full training set D1 D2 D3 Ds Ds Ds D7 Dg D9 Dio D11 Di2

Random “bag” Ds D9 D3 D4y D12D10D1o D7 D3 D1 Dg Dy

e Feature subset selection:

e Now the trees are split?

Full feature set f] fz f3 f4 fs f(, f7 fg fg f]o

Subset of subset fs fo f7 fo fi0
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Sampling

e Sample with replacement:
 allow each instance to be picked more than once

CATCH &

>.\"
RELEASE
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Bagging: Bootstrapping Aggregation

» Decisions trees are very sensitive to the data they are trained on

« small changes to the training set can result in significantly different tree
structures.

» Bagging (Bootstrap Aggregation)

 allow each individual tree to randomly sample from the dataset with
replacement, resulting in different trees.

CATCH &

).\
RELEASE
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Bagging: Bootstrapping Aggregation

» Notice that with bagging we are not subsetting the training data into smaller chunks

« Rather, if we have a sample of size N, we are still feeding each tree a training
set of size N (unless specified otherwise)

 Instead of the original training data, we take a random sample of size N with
replacement

CATCH &

).\°
RELEASE
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Bagging: Bootstrapping Aggregation

e Example
e training datawas [1, 2, 3, 4, 5, 6]
« then we might give one of our trees the following list [1, 2, 2, 3, 6, 6]

e both lists are of length six and that 2 and 6 are both repeated in the randomly
selected training data we give to our tree (because we sample with replacement)

CATCH &

).\’
RELEASE
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Feature Randomness

 Random Forests algorithm also uses a random subset of the features for each tree
» the size of these subsets should also be tweaked for optimal performance

o Usually, B is the number of trees and m is the number of features in each tree

o Classification: m = \/total features

total features

o Regression: m = 3

« These are parameters in the algorithm that need to be tuned for each dataset for
optimal performance

« side benefit: features that are utilized by more trees must be important - you can find
out which things the learning algorithm thinks are important
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Random Forest

 In our random forest, we end up with trees that are not only trained on
different sets of data (thanks to bagging) but also use different features

to make decisions

e Alarge number of relatively uncorrelated models (trees) operating as a
committee will outperform any of the individual constituent models
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Random Forest Application in a Computer Vision

Research Paper

Image Classification using Random Forests and Ferns

Anna Bosch
Computer Vision Group
University of Girona

aboschr@eia.udg.es

Abstract

We explore the problem of classifying images by the ob-
Jject categories they contain in the case of a large number
of object categories. To this end we combine three ingredi-
ents: (i) shape and appearance representations that support
spatial pyramid matching over a region of interest. This
generalizes the representation of Lazebnik et al [16] from
an image to a region of interest (ROI), and from appear-
ance (visual words) alone to appearance and local shape
(edge distributions). (ii) automatic selection of the regions
of interest in training. This provides a method of inhibiting
background clutter and adding invariance to the object in-
stance’s position, and (iii) the use of random forests (and
random ferns) as a multi-way classifier. The advantage of
such classifiers (over multi-way SVM for example) is the
ease of training and testing.

Results are reported for classification of the Caltech-101
and Caltech-256 data sets. We compare the performance of
the random forest/ferns classifier with a benchmark multi-
way SVM classifier. It is shown that selecting the ROI adds
about 5% to the performance and, together with the other
improvements, the result is about a 10% improvement over
the state of the art for Caltech-256.

Andrew Zisserman
Dept. of Engineering Science
University of Oxford

az@robots.ox.ac.uk

Xavier Muiioz
Computer Vision Group
University of Girona
xmunoz@eia.udg.es

mid matching of Lazebnik ef al. [16], and an improved clas-
sifier — the SVM-KNN algorithm of Zhang ef al. [26]. In
this paper we build on both of these ideas.

First the image representation: [16] argued that Caltech-
101 was essentially a scene matching problem so an im-
age based representation was suitable. Their representation
added the idea of flexible scene correspondence to the bag-
of-visual-word representations that have recently been used
for image classification [8, 22, 27]. We improve on their
representation in two ways. First, for training sets that are
not as constrained in pose as Caltech-101 or that have sig-
nificant background clutter, treating image classification as
scene matching is not sufficient. Instead it is necessary to
“home in” on the object instance in order to learn its visual
description. To this end we automatically learn a Region Of
Interest (ROI) in each of the training images in the manner
of [7]. The idea is that between a subset of the training im-
ages for a particular class there will be regions with high
visual similarity (the object instances). These regions can
be identified from the clutter by measuring similarity using
the spatial pyramid representation of [16], but here defined
over a ROI rather than over the entire image. The result is
that “clean” visual exemplars [3] are obtained from the pose
varying and cluttered training images.
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Random Forest Application in a Computer Vision

Research Paper

recognition, such as PASCAL) has a significant variation
in the position of the object instances within images of the
same category, and also different background clutter be-
tween images (see Fig. 2). Instead of using the entire image
to learn the model, an alternative is to focus on the object
instance in order to learn its visual description. To this end
we describe here a method of automatically learning a rect-
angular ROI in each of the training images. The intuition
is that between a subset of the training images for a partic-
ular class there will be regions with high visual similarity
(the object instances). It is a subset due to the variability in
the training images — one instance may only be similar to a
few others, not to all the other training images. These “cor-
responding” regions can be identified from the clutter by
measuring their similarity using the image representation
described in section 2 but here defined over a ROI rather
than over the entire image.

Suppose we know the ROI r; in image i and the subset of
s other images j that have “corresponding” object instances
amongst the set of training images for that class. Then we
could determine the corresponding ROIs r; of images j by
optimizing the following cost function:

Li=max )  K(D(r),D(r;)) @
2 o
where D(r;) and D(r;) the descriptors for the ROIs r; and
r; respectively, and their similarity is measured using the
kernel defined by (1). Here we use a descriptor formed by
concatenating the PHOG and PHOW vectors. As we do not
know r; or the subset of other images we also need to search
over these, i.e. over all rectangles r; and all subsets of size
s (not containing 7). This is too expensive to optimize ex-
haustively, so we find a sub-optimal solution by alternation:
for each image 1, fix r; for all other images and search over
all subsets of size s and in image i search over all regions
ri. Then cycle through each image i in turn. The value for
the parameter s depends on the intra-class variation and we
explore its affect on performance in section 6.

In practice this sub-optimal scheme produces useful
ROIs and leads to an improvement in classification perfor-
mance when the model is learnt from the ROI in each train-
ing image. Fig. 2 shows examples of the learnt ROIs for a
number of classes.

3.2. Random forests classifier

A random forest multi-way classifier consists of a num-
ber of trees, with each tree grown using some form of ran-
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Figure 2. Automatic ROI detection. Examples from Caltech-256
for s = 3 for cactus, bathtub, watermelon, camel and windmill.

domization. The leaf nodes of each tree are labeled by es-
timates of the posterior distribution over the image classes.
Each internal node contains a test that best splits the space
of data to be classified. An image is classified by sending
it down every tree and aggregating the reached leaf distri-
butions. Randomness can be injected at two points during
training: in subsampling the training data so that each tree
is grown using a different subset; and in selecting the node
tests.

Growing the trees. The trees here are binary and are con-
structed in a top-down manner. The binary test at each node
can be chosen in one of two ways: (i) randomly, i.e. data
independent; or (ii) by a greedy algorithm which picks the
test that best separates the given training examples. “Best”
here is measured by the information gain

| Qi |

AE = -5 o BQ) 3
caused by partitioning the set () of examples into two sub-
sets Q; according the given test. Here £(g) is the entropy
- Z;\': 1 piloga(p;) with p; the proportion of examples in
¢ belonging to class j, and | . | the size of the set. The
process of selecting a test is repeated for each nonterminal
node, using only the training examples falling in that node.
The recursion is stopped when the node receives too few
examples, or when it reaches a given depth.
Learning posteriors. Suppose that 7" is the set of all trees,
C'is the set of all classes and L is the set of all leaves for a
given tree. During the training stage the posterior probabili-
ties (P,1(Y () = ¢)) for each class ¢ € C at each leaf node
l € L, are found for each tree ¢t € T'. These probabilities are
calculated as the ratio of the number of images I of class ¢
that reach [ to the total number of images that reach . Y(I)
is the class-label ¢ for image I.
Classification. The test image is passed down each random



Today’s Agenda

« Random Forest Implementation using sklearn
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Random Forest

 Start working on the class notebook. Look at the code below for decision
tree

from sklearn import tree
from sklearn import metrics

# Let's use a single tree for comparison
# a default Decision Tree Classifier

dt = tree.DecisionTreeClassifier()
dt.fit(train_data,train_sln)
predictions = dt.predict(test_data)

print("accuracy score: ", metrics.accuracy_score(test_sln,predictions))

vals = data[target].unique() ## possible classification values (M = malignant; B = benign)
conf_mat = metrics.confusion_matrix(test_sln, predictions, labels=vals)
print(pd.DataFrame(conf_mat, index = "True " + vals, columns = "Predicted " + vals))
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Random Forest

« Start working on the class notebook. Now, here is the code for random
forest. They are very similar in structure.

# a Random Forest Classifier

forest = RandomForestClassifier(random_state = )
forest.fit(train_data,train_sln)

predictions = forest.predict(test_data)

print("accuracy score: ", metrics.accuracy_score(test_sln,predictions))

vals = data[target].unique() ## possible classification values (M = malignant; B = benign)
conf_mat = metrics.confusion_matrix(test_sln, predictions, labels=vals)
print(pd.DataFrame(conf_mat, index = "True " + vals, columns = "Predicted " + vals))

accuracy score: 0.9824561403508771
Predicted M Predicted B

True M 40 0

True B 2 72
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Group Exercise #1

e Look at RandomForestClassifer Documentation here

What is the default number of trees?

How does increasing or decreasing the number of trees affect accuracy?
What is the parameter to change to affect the number of features used?
How does increasing or decreasing the number of features affect accuracy?
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https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fscikit-learn.org%2Fstable%2Fmodules%2Fgenerated%2Fsklearn.ensemble.RandomForestClassifier.html

Random Forest

« Random Forests are an effective learning algorithm that uses an
ensemble of decision trees

e Basic idea: build a bunch of decision trees and have them vote on the
prediction

Instance
Random Forest —_— |
> sl o ' e >
A N AN
/ - AN &
S p/<‘ B . 2
N\ P\\/k’ N: 28 ‘ ,("/\P\ R/CKO\ ’/?\Q
60806060 dOEL DD 040 d0dd
Tree-1 Tree-2 Tree-n
Class-A Class-B Class-B

Majority-Voting }

Final-Class
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Random Forest

e Basic idea: build a bunch of decision trees and have them vote on the

prediction
Input feature vector f
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Tree 1 D, Tree 2 D, Tree L D,
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D2 D3 D2 \D3 [ ] [ [ D2 D3
\ 0
C1 C2 C1 C C2 C1
\_ J

C1 C1 C2 C1 C1 C2
J Y,

Class 1 Class 2

Votes

CS 167: Machine Learning




Feature Importance

» Because we are building so many small decision trees in a random forest,
we have the added benefit of being able to see what features are most
commonly used as high information gain features. The code below shows
how we can plot the 'Feature Importance’ chart for a random forest

e In this particular run, it looks like fractal_dimension_worst and
symmetry_worst were the two most important features, but there were a
handful of others that were important as well
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Feature Importance

import matplotlib.pyplot as plt
import numpy as np
matplotlib inline

#creates a list of numbers the right size to use as the index
#and sorts the list so that the most important feature are first
index = range(len(predictors))

importances = forest.feature_importances_

sorted_indices = np.argsort(importances)

plt.figure(figsize=(8,10)) #making the table a bit bigger so the text is readable
plt.title('Breast Cancer Feature Importances')
plt.barh(range(len(sorted_indices)),importances|[sorted_indices],height=0.8) #horizontal bar chart
plt.ylabel('Feature"')

plt.yticks(index,predictors) #put the feature names at the y tick marks

plt.xlabel("Random Forest Feature Importance")

plt.show()
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Feature Importance

Breast Cancer Feature Importances

fractal_dimension_worst
symmetry_worst
concave points_worst
concavity_worst
compactness_worst
smoothness_worst
area_worst
perimeter_worst
texture_worst
radius_worst
fractal_dimension_se
symmetry_se
concave points_se
concavity_se
compactness_se
smoothness_se
area_se

perimeter_se
texture_se

radius_se
fractal_dimension_mean
symmetry_mean
concave points_mean
concavity_mean
compactness_mean
smoothness_mean
area_mean
perimeter_mean
texture_mean
radius_mean

id

Feature

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Random Forest Feature Importance
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Tuning our Forest

 How can we tell how many trees to use?
 What about how many features to include in our trees?

« We can tune our random forest to find the best values of model

parameters: #This function just loops through a series of n_estimator values, builds a different model
#for each, and then plots their respective accuracies. By making it a function, it's easier
#to try out different ranges of numbers
import matplotlib.pyplot as plt

def tune_number_of_trees(n_estimator_values):
rf_accuracies = []

for n in n_estimator_values:

curr_rf = RandomForestClassifier(n_estimators=n, random_state=41)
curr_rf.fit(train_data,train_sln)

curr_predictions = curr_rf.predict(test_data)

curr_accuracy = metrics.accuracy_score(test_sln,curr_predictions)
rf_accuracies.append(curr_accuracy)

plt.suptitle('Random Forest accuracy vs. number of trees', fontsize=18)
plt.xlabel('# trees"')

plt.ylabel('accuracy"')
plt.plot(n_estimator_values,rf_accuracies, 'ro-')
plt.axis([@,n_estimator_values[-1]+1,.8,1])

plt.show()

tune_number_of_trees(range(1,31))
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Tuning our Forest

 How can we tell how many trees to use?
 What about how many features to include in our trees?

« We can tune our random forest to find the best values of model
parameters:

Random Forest accuracy vs. number of trees

1.000

0.975 A

0.950 -

0.925 -

0.900 -

accuracy

0.875 -

0.850 A

0.825 -

0800 T T T T T T
0 5 10 15 20 25 30
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Tuning our Forest

« It looks like whether we are using small numbers of trees or large ones, the accuracy stays about
the same. It appears at least sometimes that Random Forest doesn't take a lot of tuning of the
number of trees.

« How can we tell how many features to be used with each tree?

def tune_max_features(max_features_values):
rf_accuracies = []

for

plt.
plt.
plt.
plt.
plt.

plt.

m in max_features_values:

curr_rf = RandomForestClassifier(n_estimators=10,max_features=m, random_state=31)
curr_rf.fit(train_data,train_sln)

curr_predictions = curr_rf.predict(test_data)

curr_accuracy = metrics.accuracy_score(test_sln,curr_predictions)
rf_accuracies.append(curr_accuracy)

suptitle('Random Forest accuracy vs. max features', fontsize=18)
xlabel('max features')

ylabel('accuracy"')
plot(max_features_values,rf_accuracies, 'ro-")
axis([@,max_features_values[-1]+1,.8,1.05])

show()

tune_max_features(range(1,11))
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Tuning our Forest

» Note that the above could be subject to changes based on the initial random_state.

» For this data, which is apparently very easy to learn on (accuracy is very high), the
number of features used with each tree also didn't matter much when used with an
ensemble of 10 trees. This is probably something worth tuning if you have a lot of
features, especially if many of them might not be very relevant.

Random Forest accuracy vs. max features

1.05

] ’\’_._‘\/0—/\\0
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Group Exercise #3

e Look at RandomForestClassifer Documentation here

e Apply random forest to the wine dataset winequality-white.csv from
Notebook #4

e Can you get an Rz score above 0.575 using
RandomForestRegressor(random_state=31) (and other arguments)?

import pandas as pd
import numpy
from sklearn.model_selection import train_test_split

path = '/content/drive/MyDrive/cs167_fall23/datasets/winequality-white.csv' # available in the "Datasets" section of the blackboard

wines = pd.read_csv(path)

target = 'quality'

#predictors= data.columns.drop('quality"')

predictors = ['fixed acidity', 'volatile acidity', 'citric acid','residual sugar', 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide',
train_data, test_data, train_sln, test_sln = train_test_split(wines[predictors], wines[target], test_size = 0.2, random_state=41)
train_data.head()
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