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• Notebook #4: scikit library with wine quality


• Due tonight 03/19 by 11:59pm


• To submit, download the ipynb file from Colab

Announcements
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https://github.com/alimoorreza/CS167-SP24-Notebook-4


Today’s Agenda
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• Random Forest

• Warm-Up Exercise

• Random Forest Implementation using sklearn
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Review of the Scikit Learn 'Algorithm'

• When working in Scikit Learn (sklearn), there is a general pattern 
that we can follow to implement any supported machine learning 
algorithm. It goes like this:


• Load your data using pd.read_csv()

• Split your data train_test_split()

• Create your classifier/regressor object

• Call fit() to train your model

• Call predict() to get predictions

• Call a metric function to measure the performance of your model



• Make a copy of today’s Notebook

• Day12_Random_Forests


• Make sure you change the path to match your Google Drive location

• Load the breast-cancer-wisconsin-data.csv file

Warm-up Exercise
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https://github.com/alimoorreza/CS167-sp24-notes/blob/main/Day12_Random_Forests.ipynb


• Finish the rest

Warm-up Exercise
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• Random Forest

• Warm-Up Exercise

• Random Forest Implementation using sklearn



Ensemble Learning
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• The 'ask the audience' models:
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Ensemble Learning
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• Ensemble Learning: 


• using multiple learners/hypotheses for coming up with predictions - 
often performs better than using one algorithm alone


• Like crowdsourcing different machine learning models to come up with 
a consensus



Forest Data Structure

CS 167: Machine Learning

• Tree: a common data structure that simulates a hierarchical tree 
structure, with a root value and subtrees of children with a parent node, 
represented as a set of liked nodes.


• Forest: is a collection of trees



Random Forest
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• Big Idea: A large number of relatively uncorrelated models (trees) 
operating as a committee will outperform any of the individual 
constituent models.



Random Forest
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• Random Forest is an effective learning algorithm that uses an ensemble 
of decision trees


• Basic idea: build a bunch of decision trees and have them vote on the 
prediction



Random Forest
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• Basic idea: build a bunch of decision trees and have them vote on the 
prediction



How to create different trees?
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• The power of a diverse portfolio:

• Just like how we want investments (e.g. stock portfolios) to be diverse…

• Low correlation amongst investments cause stability and reliability


• Don’t put all of your money in one industry


• Uncorrelated models can produce ensemble predictions that are more 
accurate than any of the individual predictions


• As long as the trees don’t consistently err in the same direction



What Random Forests Need?
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• There needs to be some actual signal in our features so that models built using 
those features do better than random guessing


• The predictions (and therefore the errors) made by the individual trees need to 
have low correlations with each other


• Need to set up the trees so they all don’t make the same mistakes


• How can we do this?

• Introduce some randomness …



How to introduce Randomness?
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•Bagging:

• What data is used for the training sets?


•Feature subset selection:

• Now the trees are split?

Full training set

Random “bag”

Full feature set

Subset of subset



Sampling
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• Sample with replacement:

• allow each instance to be picked more than once




Bagging: Bootstrapping Aggregation

CS 167: Machine Learning

• Decisions trees are very sensitive to the data they are trained on

• small changes to the training set can result in significantly different tree 

structures.


• Bagging (Bootstrap Aggregation) 

• allow each individual tree to randomly sample from the dataset with 

replacement, resulting in different trees.




Bagging: Bootstrapping Aggregation
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• Notice that with bagging we are not subsetting the training data into smaller chunks


• Rather, if we have a sample of size N, we are still feeding each tree a training 
set of size N (unless specified otherwise)


• Instead of the original training data, we take a random sample of size N with 
replacement




Bagging: Bootstrapping Aggregation
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• Example


• training data was [1, 2, 3, 4, 5, 6]

• then we might give one of our trees the following list [1, 2, 2, 3, 6, 6]

• both lists are of length six and that 2 and 6 are both repeated in the randomly 
selected training data we give to our tree (because we sample with replacement)



Feature Randomness
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• Random Forests algorithm also uses a random subset of the features for each tree


• the size of these subsets should also be tweaked for optimal performance


• Usually, 𝐵  is the number of trees and m is the number of features in each tree


• These are parameters in the algorithm that need to be tuned for each dataset for 
optimal performance


• side benefit: features that are utilized by more trees must be important - you can find 
out which things the learning algorithm thinks are important




Random Forest
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• In our random forest, we end up with trees that are not only trained on 
different sets of data (thanks to bagging) but also use different features 
to make decisions


• A large number of relatively uncorrelated models (trees) operating as a 
committee will outperform any of the individual constituent models



Random Forest Application in a Computer Vision 
Research Paper
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Random Forest Application in a Computer Vision 
Research Paper
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Today’s Agenda
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• Random Forest

• Warm-Up Exercise

• Random Forest Implementation using sklearn



Random Forest
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• Start working on the class notebook. Look at the code below for decision 
tree



Random Forest
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• Start working on the class notebook. Now, here is the code for random 
forest. They are very similar in structure.



Group Exercise #1
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• Look at RandomForestClassifer Documentation here


• What is the default number of trees?

• How does increasing or decreasing the number of trees affect accuracy?

• What is the parameter to change to affect the number of features used?

• How does increasing or decreasing the number of features affect accuracy?

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fscikit-learn.org%2Fstable%2Fmodules%2Fgenerated%2Fsklearn.ensemble.RandomForestClassifier.html


Random Forest
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• Random Forests are an effective learning algorithm that uses an 
ensemble of decision trees


• Basic idea: build a bunch of decision trees and have them vote on the 
prediction
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• Basic idea: build a bunch of decision trees and have them vote on the 
prediction



Feature Importance
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• Because we are building so many small decision trees in a random forest, 
we have the added benefit of being able to see what features are most 
commonly used as high information gain features. The code below shows 
how we can plot the 'Feature Importance' chart for a random forest


• In this particular run, it looks like fractal_dimension_worst and 
symmetry_worst were the two most important features, but there were a 
handful of others that were important as well



Feature Importance
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Feature Importance
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Tuning our Forest
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• How can we tell how many trees to use?

• What about how many features to include in our trees?

• We can tune our random forest to find the best values of model 

parameters:
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Tuning our Forest
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• It looks like whether we are using small numbers of trees or large ones, the accuracy stays about 
the same. It appears at least sometimes that Random Forest doesn't take a lot of tuning of the 
number of trees.


• How can we tell how many features to be used with each tree?




Tuning our Forest
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• Note that the above could be subject to changes based on the initial random_state.

• For this data, which is apparently very easy to learn on (accuracy is very high), the 

number of features used with each tree also didn't matter much when used with an 
ensemble of 10 trees. This is probably something worth tuning if you have a lot of 
features, especially if many of them might not be very relevant.



Group Exercise #3
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• Look at RandomForestClassifer Documentation here


• Apply random forest to the wine dataset winequality-white.csv from 
Notebook #4


• Can you get an 𝑅2 score above 0.575 using 
RandomForestRegressor(random_state=31) (and other arguments)?

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fscikit-learn.org%2Fstable%2Fmodules%2Fgenerated%2Fsklearn.ensemble.RandomForestClassifier.html

