# CS167: Machine Learning

Convolutional Neural Network (CNN)

Wednesday, November 20th, 2024



### What's Next?

• A multilayer perceptron (MLP) is the simplest type of neural network. It consists of perceptrons (aka nodes, neurons) arranged in layers



• A multilayer perceptron (MLP) is just the tip of the iceberg; plenty of other neural network variants exist.

# Today's Agenda

- Convolutional Neural Network (CNN): another type of neural network
  - Convolution operation
  - Nonlinearity
  - Pooling operation
  - CNN: convolutional layer + nonlinearity + pooling layer

• A convolutional neural network that applies convolutional filters on gridlike input such as a image

- Image data is represented as a twodimensional grid of pixels, either grayscale (monochromatic) or color (RBG)
  - each pixel corresponds to one or multiple numeric values: if it's grayscale, it is one number, if it's color, it corresponds to 3 numbers (a red, a green and a blue value)



Red channel

Green channel

Blue channel

• A convolutional neural network that applies convolutional filters on gridlike input such as a image



• A convolutional neural network that applies convolutional filters on gridlike input such as a image



- In order to capture the local dependence of images, we use **convolutional filters**. A convolutional filter, aka kernel:
  - is smaller than the input data (usually 3x3 or 5x5 or 7x7)
  - uses dot product multiplication between a piece of the input that is the size of the filter and the filter
  - scans over the image from the upper left to the bottom right

- What does a **convolution operation** do?
- In an ideal **convolution operation**, a kernel is "flipped" (horizontally and vertically) and then it is applied through the image (from left to right, and top to bottom)





#### How to calculate the output volume size?



# animatedai.github.io

#### How to calculate the output volume size?



https://www.youtube.com/watch?v=w4kNHKcBGzA&t=210s

• What does a convolution operation do?

|     |     |   | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  |    |    |    |    |    |    |    |    |  |
|-----|-----|---|---|---|----|----|----|----|----|----|---|---|--|----|----|----|----|----|----|----|----|--|
|     |     |   | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  | 0  | 10 | 20 | 30 | 30 | 30 | 20 | 10 |  |
|     |     |   | 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |  | 0  | 20 | 40 | 60 | 60 | 60 | 40 | 20 |  |
| 1/9 | 1/9 |   | 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |  | 0  | 30 | 60 | 90 | 90 | 90 | 60 | 30 |  |
| 1/9 | 1/9 | × | 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |  | 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 1/9 | 1/9 | • | 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |  | 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
|     |     |   | 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |  | 0  | 20 | 30 | 50 | 50 | 60 | 40 | 20 |  |
|     |     |   | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  | 10 | 20 | 30 | 30 | 30 | 30 | 20 | 10 |  |
|     |     |   | 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  | 10 | 10 | 10 | 0  | 0  | 0  | 0  | 0  |  |
|     |     |   | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  |    |    |    |    |    |    |    |    |  |

H

1/9

1/9

1/9

kernel of size 3x3 units

F'

image of 10x10 units

convolved result of 10x10 units

- What does a **convolution operation** do?
- convolution operation can be achieved with a series of dot products between portions of input feature map and a convolution filter (kernel) weights



Another visualization shows a yellow convolution filter applied to a green image, resulting in the convolved feature

- What does a convolution operation do?
- convolution operation can be achieved with a series of dot products between portions of input feature map and a convolution filter (kernel) weights



2 + 10 + 4 + 26 + 100 + 30 + 8 + 12 + 6 = 198

#### **Convolution Operation Animation!**

- What does a **convolution operation** do?
- convolution operation can be achieved with a series of dot products between portions of input feature map and a convolution filter (kernel) weights



input

Another visualization shows a convolution filter applied to an image, resulting in the convolved feature

#### **Group Exercise**

• find the result of the convolution operation below

| K    | erne    | el   |   | Image  |      |   |  |  |  |  |  |
|------|---------|------|---|--------|------|---|--|--|--|--|--|
| 0    | -1      | 0    |   | 2      | 2    | 2 |  |  |  |  |  |
| -1   | 5       | -1   | * | 2      | 3    | 2 |  |  |  |  |  |
| 0    | -1      | 0    |   | 2      | 2    | 2 |  |  |  |  |  |
| к    | erne    | el   |   | In     | nage | e |  |  |  |  |  |
|      |         |      |   |        |      |   |  |  |  |  |  |
| 0    | -1      | 0    |   | 2      | 2    | 2 |  |  |  |  |  |
| 0 -1 | -1<br>5 | 0 -1 | * | 2<br>2 | 2    | 2 |  |  |  |  |  |

• A **convolutional neural network (CNN)** is a neural network with specialized connectivity structure



• Every layer of a CNN transforms the <u>input volume</u> to an <u>output volume</u> of neuron activations. The red input layer holds the image, so its width and height would be the dimensions of the image, and the depth would be 3 (Red, Green, Blue channels)



- Weights correspond to the filter (kernel) values
- Convolutional neural network can learn their own filters!
  - We do not need to provide the values inside the kernel

#### CNN: How to calculate the output volume size?



#### CNN: How to calculate the output volume size?

- An input volume has size (*WxWx3*), eg, (227, 227, 3)
- Filter size/receptive field is (FxF), eg, (11x11)
- Spatial Stride **S**, eg, **S**=4
- Padding size *P*, eg, *P*=0
- Number of filters *K*, eg, *K*=96

(W - F + 2P)

S

output

volume width/

height





#### How to calculate the output volume size?

- An input volume has size (W<sub>1</sub> x H<sub>1</sub> x D<sub>1</sub>)
  - Filter size/receptive field is (FxF)
  - Spatial stride size **S**
  - Padding size **P**
  - Number of filters *K*
- Spatial sizes of the output volume (W<sub>2</sub> x H<sub>2</sub> x D<sub>2</sub>)

$$W_2 = \frac{(W_1 - F + 2P)}{S} + 1$$
  
 $H_2 = \frac{(H_1 - F + 2P)}{S} + 1$ 



$$D_2 = K$$

- Number of filter weight parameters = (F x F x D<sub>1</sub>) x K
- Number of bias parameters = K

## **Group Exercise**

- What will the size of the output of the following convolution be?
  - (5x5x1) \* (3x3)

| 2 | 4 | 9    | 1 | 4 |       | 1  | 2      |   |
|---|---|------|---|---|-------|----|--------|---|
| 2 | 1 | 4    | 4 | 0 | -     | '  | 2      | 5 |
| 1 | 1 | 2    | 9 | 2 | *     | -4 | 7      | 4 |
| 7 | 3 | 5    | 1 | 3 |       | 2  | -5     | 1 |
| 2 | 3 | 4    | 8 | 5 |       | F  | Filter | / |
|   | I | mage |   | r | Verne | 91 |        |   |

# Today's Agenda

- Convolutional Neural Network (CNN): another type of neural network
  - Convolution operation
  - Nonlinearity
  - Pooling operation
  - CNN: convolutional layer + nonlinearity + pooling layer

## **Nonlinear Function**

• Just like an MLP, each convolutional output goes through a non-linear function such as Sigmoid, Tanh, or Rectified Linear Unit (ReLU)

$$convolution = 1*1 + 1*0 + 1*1 + 0*0 + 1*1 + 1*0 + 0*1 + 0*0 + 1*1 = 4$$





## Today's Agenda

• Deep Learning

- Convolutional Neural Network (CNN)
  - Convolution operation
  - Nonlinearity
  - Pooling operation
  - CNN: convolutional layer + nonlinearity + pooling layer

# **Pooling Operation**

- Image data can get computationally inefficient, really quickly. To avoid this, we often toss in a layer that helps us to **summarize** and **downsample** the data
- In classical CNN, we find another useful operation called **pooling operation**
- A common pooling operation is **max pooling**, and its goal is to locally summarize the convolution. It performs something like a convolution, but rather than taking the dot product, it takes the maximum element in the filter area



# **Pooling Operation**

- Pooling operation downsamples the volume spatially, independently in each depth slice of the input volume
- Besides max pooling, other pooling operations include: sum pooling, average pooling



#### **CNN: A Composition of Convolutional Layers**

- We've talked about **image data**, **convolutions**, **nonlinearity**, **max pooling**, and how they are related to some computer vision tasks. Let's connect the dots
  - input is an image (in this case a color image, so 3 channels-red, green, and blue)
  - there are several filters, not just one.
  - Conv2D layers with ReLU are often followed by maxpool
  - towards the end of the model, we switch to fully connected (Dense) layer
  - We have as many output nodes as we have classes to predict



**Reference**