CS167: Machine Learning

MLP Training
Convolutional Neural Network (CNN)

Monday, November 18th, 2024

Prake

UNIVERSITY

CS 167: Machine Learning (Dr Alimoor Reza)

Recap: Multilayer Perceptron (MLP)

« A multilayer perceptron is the simplest type of neural network. It
consists of perceptrons (aka nodes, neurons) arranged in layers

Input layer 1st Hidden layer 2nd Hidden layer Output layer

X \ ‘\ \
v & Q \/ Q(/)
= Dol \\5'6‘90"‘*0
IR 77,
image PyTorch ‘1//"\\\‘ 1/"\\\‘ Y Yo
sgx2g Flatten() 7 P '["v
BTN

CS 167: Machine Learning (Dr Alimoor Reza)

Recap: List of PyTorch Functions We Need

e nn.Linear()

creates the dense connections between two adjacent layers (left layer and right layer)
just provide #neurons_left_layer and #neurons_right_layer

e nn.RelLU(Q

e nn.Softmax()

e nn.flatten()

e nn.Sequential()

* nn.CrossEntropyl.oss()
e torch.optim.SGD

e Let's jump into the notebook for a detailed discussion.

CS 167: Machine Learning (Dr Alimoor Reza)

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#relu
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html#softmax
https://pytorch.org/docs/stable/generated/torch.nn.Flatten.html
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html#torch.optim.SGD

Today’s Agenda

o Activity Poll on MLP

CS 167: Machine Learning (Dr Alimoor Reza)

Poll: MLP Summary

e Finish the MLP poll below:

https://forms.gle/HDRw31snHAnLaQb17

CS 167: Machine Learning (Dr Alimoor Reza)

https://forms.gle/HDRw31snHAnLaQb17

Today’s Agenda

e Modular code for MLP training

CS 167: Machine Learning (Dr Alimoor Reza)

Modular Code Multilayer Perceptron using MLP

A multilayer perceptron is the simplest type of neural network. It consists of perceptrons (aka nodes, neurons) arranged in layers. Create a
network class with two methods:

e init()
o forward()

© import torch
from torch import nn

You can give any name to your new network, e.g., SimpleMLP.

However, you have to mandatorily inherit from nn.Module to

create your own network class. That way, you can access a lot of
useful methods and attributes from the parent class nn.Module

class SimpleMLP(nn.Module):
def __init_ (self):
super().__init_ ()
your network layer construction should take place here
...
aan

def forward(self, x):
your code for MLP forward pass should take place here
...
eas
return Xx

Dive into the Colab demo!

CS 167: Machine Learning (Dr Alimoor Reza)

Today’s Agenda

e Modular code for MLP training

CS 167: Machine Learning (Dr Alimoor Reza)

Stochastic Gradient Descent (SGD)

« Keep doing the Gradient Descent, but instead of using all the training
samples, use small subset of training samples picked randomly when
computing the gradient vector

« divide the entire training data into mini batches
» calculate the gradient vector based on that batch V E(w)

« adjust (or update) the values of the weights based on the gradient vector
to that batch

whew — WOld —7 VE(W)

CS 167: Machine Learning (Dr Alimoor Reza)

N training examples

—}

Stochastic Gradient Descent (SGD)

[ﬁ" create mini-batches
with batch size of B

eg, N=64, B=4

'Batch: N/B
Batch: 3 : :
Batch: 2

Batch: 1

-

\.

Do Gradient
Descent on
each batch
sequentially

~

J

CS 167: Machine Learning (Dr Alimoor Reza)

In PyTorch: Stochastic Gradient Descent (SGD)
G

Iﬁ create mini-batches

with batch size of B
Do Gradient

:{> Batch: 3 Descent on
each batch
sequentially

N training examples

Batch: 1

PyTorch Implementation

learning_rate = 1le-3

batch_size = 4 # If the total sample size is 64, setting batch_size=4 will divide the data into 64+4=16 mini-batches of tensors
epochs =10

let's use SGD optimization algorithm for training our model

optimizer = torch.optim.SGD(mlp_model.parameters(), lr=learning_rate)

Optimiztaion, as we have discussed earlier, is process of adjusting model parameters to reduce model error in each training step. PyTorch
provides a selection of optimization algorithms in the torch.optim package. Some of them are as follows:

e torch.optim.SGD
e torch.optim..Adam
e torch.optim.RMSprop

In addition to selecting the optimizer, we can also select the hyperparameters which are refered to as adjustable parameters crucial for
controlling the model optimization process. You can influence the training and convergence of the model by tweaking these hyperparameters:

» epochs: denotes the number of iterations over the dataset
« batch size: represents the quantity of data samples in each iteration propagated through the network before updating the parameters
« learning rate: determines the extent of parameter updates made at each batch/epoch

CS 167: Machine Learning (Dr Alimoor Reza)

Today’s Agenda

e Convolutional Neural Network (CNN): another type of neural network

CS 167: Machine Learning (Dr Alimoor Reza)

What’s Next?

o A multilayer perceptron (MLP) is the simplest type of neural network.
It consists of perceptrons (aka nodes, neurons) arranged in layers

b

o A multilayer perceptron (MLP) is just the tip of the iceberg; plenty of
other neural network variants exist.

CS 167: Machine Learning (Dr Alimoor Reza)

