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Recap: Important Design Questions for MLP

e Each of these questions need to be answered before you set up your
multilayer perceptron

e Q1: how many hidden layers should be there? (depth)
e Q2: how many neurons should be in each layer? (width)

e Q3: how many dense connections should be there in between each
adjacent layers

e Q4: what should the activation be at each of the intermediate layers?
e sigmoid(), tanh(), rectified-linear-unit(), etc
e Q5: what should be activation of the final layer

e depends the task classification (sigmoid(),
softmax()) vs. regression
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Recap: Important Design Questions for MLP

© torch.manual_seed(1) # for reproducibility
# Q1: how many hidden layers should be there? (depth)
# answer: there is only 1 hidden layer
num_of_hidden_layer = 1

# Q2: how many neurons should be in each layer? (width)
# answer: there are 2 neurons in the input Tlayer

# there are 3 neurons in the hidden layer

# there are 1 neurons in the output layer

num_of_neurons_input_layer = 2

#num_of_neurons_input_layer = input_feature_size # also can be assigned from 'input_feature_size' (which we computed in the previous cell
num_of_neurons_hidden_layer = 3

num_of_neurons_output_layer = 1

# Q3 how many dense connections should be there in between each adjacent layers

# answer: there should be 2x3 dense connnections (between input Tlayer and hidden layer: dense_connections_W1)

# there should be 3x1 dense connnections (between hidden layer and output layer: dense_connections_W2)
dense_connections_W1 = torch.randn(num_of_neurons_input_layer, num_of_neurons_hidden_layer)

dense_connections_W2 = torch.randn(num_of_neurons_hidden_layer, num_of_neurons_output_layer)

print('Random initialized weights between input 1layer and hidden layer: dense_connections_W1=\n', dense_connections_W1.numpy())
print('Random initialized weights between input 1layer and hidden layer: dense_connections_W2=\n', dense_connections_W2.numpy())
# add the bias terms for all the layers except input layer

bias_terms_hidden = torch.randn(num_of_neurons_hidden_layer)

bias_terms_output = torch.randn(num_of_neurons_output_layer)

print('bias_terms_hidden:\n', bias_terms_hidden.numpy())

print('bias_terms_output:\n', bias_terms_output.numpy())

Random initialized weights between input layer and hidden layer: dense_connections_W1=
[[ 0.66135216 ©0.2669241 0.06167726]
[ 9.6213173 -0.45190597 -0.16613023]]
Random initialized weights between input layer and hidden layer: dense_connections_W2=
[[-1.5227685 ]
[ 0.38168392]
[-1.0276086 ]1]
bias_terms_hidden:
[-0.5630528 -0.89229053 -0.05825018]
bias_terms_output:
[-0.19550958]
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Recap: Important Design Questions for MLP

torch.manual_seed(1) # for reproducibility

# Ql: how many hidden layers should be there? (depth)
# answer: there is only 1 hidden layer
num_of_hidden_layer = 1

# Q2: how many neurons should be in each layer? (width)
# answer: there are 2 neurons in the input layer

# there are 3 neurons in the hidden layer
# there are 1 neurons in the output layer
num_of_neurons_input_layer = 2

#num_of_neurons_input_layer = input_feature_size # also can be assigned from 'input_feature_size' (which we computed in the previous cell
num_of_neurons_hidden_layer = 3
num_of_neurons_output_layer = 1

# Q3 how many dense connections should be there in between each adjacent layers

# answer: there should be 2x3 dense connnections (between input 1layer and hidden layer: dense_connections_W1)

# there should be 3x1 dense connnections (between hidden layer and output layer: dense_connections_W2)
dense_connections_W1 = torch.randn(num_of_neurons_input_layer, num_of_neurons_hidden_layer)

dense_connections_W2 = torch.randn(num_of_neurons_hidden_layer, num_of_neurons_output_layer)

print('Random initialized weights between input 1layer and hidden layer: dense_connections_W1l=\n', dense_connections_W1.numpy())
print('Random initialized weights between input 1layer and hidden layer: dense_connections_W2=\n', dense_connections_W2.numpy())
# add the bias terms for all the layers except input layer

bias_terms_hidden = torch.randn(num_of_neurons_hidden_layer)

bias_terms_output = torch.randn(num_of_neurons_output_layer)

print('bias_terms_hidden:\n', bias_terms_hidden.numpy())

print('bias_terms_output:\n', bias_terms_output.numpy())
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Recap: Important Design Questions for MLP

© torch.manual_seed(1) # for reproducibility
# Q1: how many hidden layers should be there? (depth)
# answer: there is only 1 hidden layer
num_of_hidden_layer = 1

# Q2: how many neurons should be in each layer? (width)

# answer: there are 2 neurons in the input layer

# there are 3 neurons in the hidden layer

# there are 1 neurons in the output layer

num_of_neurons_input_layer = 2

#num_of_neurons_input_layer = input_feature_size # also can be assigned from 'input_feature_size' (which we computed in the previous cell
num_of_neurons_hidden_layer = 3

num_of_neurons_output_layer = 1

# Q3 how many dense connections should be there in between each adjacent layers

# answer: there should be 2x3 dense connnections (between input layer and hidden layer: dense_connections_W1)
# there should be 3x1 dense connnections (between hidden layer and output layer: dense_connections_W2)
dense_connections_W1 = torch.randn(num_of_neurons_input_layer, num_of_neurons_hidden_layer)
dense_connections_W2 = torch.randn(num_of_neurons_hidden_layer, num_of_neurons_output_layer)

[21] # Q4: what should the activation be at each of the intermediate layers?
# answer: let use sigmoid() activation function in the hidden layer
sigmoid_activation_hidden = nn.Sigmoid()

[22] # Q5: what should be activation of the final layer (let's assume we are using a binary classification task for which sigmoid ctivation is
sigmoid_activation_output = nn.Sigmoid()
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Recap: Forward Pass in our Multilayer Perceptron (MLP)

e Each neuron contains two operations:

e a dot product between a weight vector (edges in the graph) and an input vector, which
produces a number

e Then, that number through an activation function, which produces a number as an output

-0.56
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Recap: Forward Pass in our Multilayer Perceptron (MLP)

e Each neuron contains two operations:

e a dot product between a weight vector (edges in the graph) and an input vector, which
produces a number

e Then, that number through an activation function, which produces a number as an output

Consider doing fi rd
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Recap: Forward Pass in our Multilayer Perceptron (MLP)

e Each neuron contains two operations:

e a dot product between a weight vector (edges in the graph) and an input vector, which
produces a number

e Then, that number through an activation function, which produces a number as an output

Consider doing fi rd .
Sample# AR - \
n 1.5409961 -0.2934289 | > x,;=1.54099

/

X,=-0.2934 —
1 0 1 — ;
wix=[wo wi wa]| 154 [X#[-0.058 0.06 —0.17]| 1.54 [ =(=0.058)+1.54*0.06 + (—0.293) * (—0.17) = 0.084 1 + exp—0084
-0.293 |X2 -0.293 — 0.5%0
Xo will always be 1.0
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Recap: Forward Pass in our Multilayer Perceptron (MLP)

e Each neuron contains two operations:

e a dot product between a weight vector (edges in the graph) and an input vector, which
produces a number

e Then, that number through an activation function, which produces a number as an output

We can collective do all these dot products in a single layer using a single matrix-matrix
multiplication torch.matmul() as follows.

Also add the bias-term aft®r computing the matrix multiplication

() matrix_mult_X_and_W1f= torch.matmul(randdm_X[0,:], dense_connections_W1l) + bias_terms_hidden
print('hidden layer I vector and ht vector dot products: \n', matrix_mult_X_and_W1.numpy())
output_hidden_layer = sigmoid_activation_hidden(matrix_mult_X_and_W1)

print('output of hidden layer: \n', output_hidden_layer.numpy())

hidden layer input vector and weight vector dot products:
[ ©.27377588 -0.3483593 0.08554165]

output of hidden layer:
[0.5680196 ©.41378036 0.5213724 ]
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Recap: Forward Pass in our Multilayer Perceptron (MLP)

e Each neuron contains two operations:

e a dot product between a weight vector (edges in the graph) and an input vector, which

produces a number

e Then, that number through an activation function, which produces a number as an output
« We can collective do all these dot products in a single layer using a single matrix-matrix

multiplication torch.matmul() as follows.
e Also add the bias-term after computing the matrix multiplication

Consider doing fi rd
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Recap: Forward Pass in our Multilayer Perceptron (MLP)

0 matrix_mult_hidden_and_W2 = torch.matmul(output_hidden_layer, dense_connections_W2) + bias_terms_output
print('output of output layer: \n', matrix_mult_hidden_and_w2)
final_output = sigmoid_activation_output(matrix_mult_hidden_and_Ww2)
print(‘'output of hidden layer: \n', final_output.numpy())

output of output layer:
tensor([-1.4383])

output of hidden layer:
[0.1918079]
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Today’s Agenda

« Simple Multilayer Perceptrons (MLP) Implementation using PyTorch

e Basic functions and utilities
so that we don’t need to

explicitly apply functions
such as: torch.matmult()
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List of PyTorch Functions We Need

e nn.Linear()

creates the dense connections between two adjacent layers (left layer and right layer)
just provide #neurons_left_layer and #neurons_right_layer

e nn.RelLU(Q)

* nn.Softmax()

e nn.flatten()

e nn.Sequential()

e Let's jump into the notebook for a detailed discussion
o https://github.com/alimoorreza/CS167-fall24-notes/blob/main/Day20 MLP_with_PyTorch.ipynb
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nn.Linear() function

v Group Exercise#1

Create a new Linear layer with the following structure:

The first layer has 2 input nodes and 16 output nodes.

[ 1 # your code here
# ...

v Group Exercise#2

Apply a tensor through your linear layer now.

Change the value in torch.manual_seed(0) to something else, generate new inputs, and pass the tensor through your linear layer
again.

Observe the the output values.

[ 1 # your code here.
# oean
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Activation Functions: nn.Sigmoid() nn.ReLU() etc

v Group Exercise#3

Experiment with different activation functions like sigmoid, tanh, and relu, and then pass a tensor through the linear layer you
created for Group Exercises #1 and #2.

Change the value in torch.manual_seed(2) to something else, generate new inputs, and pass the tensor through your linear layer
again.

Take a look at the output values and make sure they match what you were expecting!
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Combining everything to make an MLP

v Group Exercise#4

Let's create three Linear layers and connect them in sequence to build an MLP with the following structure:
The first layer has 2 input nodes and 3 output nodes.
The second layer takes 3 input nodes and outputs 6 nodes.

The final layer connects 6 input nodes to 2 output nodes.

[ 1 # your code here
# ...

v Group Exercise#5

Apply a tensor through your MLP now.

[ 1 # your code here
# ...
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Today’s Agenda

e Modular MLP Implementation using PyTorch
e structural aspect
» following the conventions of the research community
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Modular Code Multilayer Perceptron using MLP

A multilayer perceptron is the simplest type of neural network. It consists of perceptrons (aka nodes, neurons) arranged in layers. Create a
network class with two methods:

* init()
o forward()

© import torch
from torch import nn

# You can give any name to your new network, e.g., SimpleMLP.

# However, you have to mandatorily inherit from nn.Module to

# create your own network class. That way, you can access a lot of
# useful methods and attributes from the parent class nn.Module

class SimpleMLP(nn.Module):
def __init__ (self):
super().__init__ ()
# your network layer construction should take place here
# aan
# eas

def forward(self, x):
# your code for MLP forward pass should take place here
# ...
# can
return x
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List of PyTorch Functions We Need

* nn.CrossEntropyl.oss()
e torch.optim.SGD

Training the network using loss function
Optimizer

e Let's jump into the notebook for a detailed discussion

e https://github.com/alimoorreza/CS167-fall24-notes/blob/main/
Day20 Building Modular MLP_ with PyTorch.ipynb
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