CS167: Machine Learning

Modular Implementation of Multilayer Perceptron
(MLP) with PyTorch

Wednesday, November 13th, 2024

Prake

UNIVERSITY

CS 167: Machine Learning (Dr Alimoor Reza)

Recap: Important Design Questions for MLP

e Each of these questions need to be answered before you set up your
multilayer perceptron

e Q1: how many hidden layers should be there? (depth)
e Q2: how many neurons should be in each layer? (width)

e Q3: how many dense connections should be there in between each
adjacent layers

e Q4: what should the activation be at each of the intermediate layers?
e sigmoid(), tanh(), rectified-linear-unit(), etc
e Q5: what should be activation of the final layer

e depends the task classification (sigmoid(),
softmax()) vs. regression

CS 167: Machine Learning (Dr Alimoor Reza)

Recap: Important Design Questions for MLP

© torch.manual_seed(1) # for reproducibility
Q1: how many hidden layers should be there? (depth)
answer: there is only 1 hidden layer
num_of_hidden_layer = 1

Q2: how many neurons should be in each layer? (width)
answer: there are 2 neurons in the input Tlayer

there are 3 neurons in the hidden layer

there are 1 neurons in the output layer

num_of_neurons_input_layer = 2

#num_of_neurons_input_layer = input_feature_size # also can be assigned from 'input_feature_size' (which we computed in the previous cell
num_of_neurons_hidden_layer = 3

num_of_neurons_output_layer = 1

Q3 how many dense connections should be there in between each adjacent layers

answer: there should be 2x3 dense connnections (between input Tlayer and hidden layer: dense_connections_W1)

there should be 3x1 dense connnections (between hidden layer and output layer: dense_connections_W2)
dense_connections_W1 = torch.randn(num_of_neurons_input_layer, num_of_neurons_hidden_layer)

dense_connections_W2 = torch.randn(num_of_neurons_hidden_layer, num_of_neurons_output_layer)

print('Random initialized weights between input 1layer and hidden layer: dense_connections_W1=\n', dense_connections_W1.numpy())
print('Random initialized weights between input 1layer and hidden layer: dense_connections_W2=\n', dense_connections_W2.numpy())
add the bias terms for all the layers except input layer

bias_terms_hidden = torch.randn(num_of_neurons_hidden_layer)

bias_terms_output = torch.randn(num_of_neurons_output_layer)

print('bias_terms_hidden:\n', bias_terms_hidden.numpy())

print('bias_terms_output:\n', bias_terms_output.numpy())

Random initialized weights between input layer and hidden layer: dense_connections_W1=
[[0.66135216 ©0.2669241 0.06167726]
[9.6213173 -0.45190597 -0.16613023]]
Random initialized weights between input layer and hidden layer: dense_connections_W2=
[[-1.5227685]
[0.38168392]
[-1.0276086]1]
bias_terms_hidden:
[-0.5630528 -0.89229053 -0.05825018]
bias_terms_output:
[-0.19550958]

CS 167: Machine Learning (Dr Alimoor Reza)

(>

Random initialized weights between input layer and hidden layer: dense_connections_W1=
[[0.66135216 0.2669241 0.06167726]
[0.6213173 -0.45190597 -0.16613023]]

Random initialized weights between input layer and hidden layer: dense_connections_W2=

[[-1.5227685]
[0.38168392]
[-1.0276086 11

bias_terms_hidden: :

[-0.5630528 -0.89229053 -0.05825018]
bias_terms_output:

[-0.19550958]

Recap: Important Design Questions for MLP

torch.manual_seed(1) # for reproducibility

Ql: how many hidden layers should be there? (depth)
answer: there is only 1 hidden layer
num_of_hidden_layer = 1

Q2: how many neurons should be in each layer? (width)
answer: there are 2 neurons in the input layer

there are 3 neurons in the hidden layer
there are 1 neurons in the output layer
num_of_neurons_input_layer = 2

#num_of_neurons_input_layer = input_feature_size # also can be assigned from 'input_feature_size' (which we computed in the previous cell
num_of_neurons_hidden_layer = 3
num_of_neurons_output_layer = 1

Q3 how many dense connections should be there in between each adjacent layers

answer: there should be 2x3 dense connnections (between input 1layer and hidden layer: dense_connections_W1)

there should be 3x1 dense connnections (between hidden layer and output layer: dense_connections_W2)
dense_connections_W1 = torch.randn(num_of_neurons_input_layer, num_of_neurons_hidden_layer)

dense_connections_W2 = torch.randn(num_of_neurons_hidden_layer, num_of_neurons_output_layer)

print('Random initialized weights between input 1layer and hidden layer: dense_connections_W1l=\n', dense_connections_W1.numpy())
print('Random initialized weights between input 1layer and hidden layer: dense_connections_W2=\n', dense_connections_W2.numpy())
add the bias terms for all the layers except input layer

bias_terms_hidden = torch.randn(num_of_neurons_hidden_layer)

bias_terms_output = torch.randn(num_of_neurons_output_layer)

print('bias_terms_hidden:\n', bias_terms_hidden.numpy())

print('bias_terms_output:\n', bias_terms_output.numpy())

-0.56

X, =

implies

x2=?

Machine Learning Alimoor Reza)

Recap: Important Design Questions for MLP

© torch.manual_seed(1) # for reproducibility
Q1: how many hidden layers should be there? (depth)
answer: there is only 1 hidden layer
num_of_hidden_layer = 1

Q2: how many neurons should be in each layer? (width)

answer: there are 2 neurons in the input layer

there are 3 neurons in the hidden layer

there are 1 neurons in the output layer

num_of_neurons_input_layer = 2

#num_of_neurons_input_layer = input_feature_size # also can be assigned from 'input_feature_size' (which we computed in the previous cell
num_of_neurons_hidden_layer = 3

num_of_neurons_output_layer = 1

Q3 how many dense connections should be there in between each adjacent layers

answer: there should be 2x3 dense connnections (between input layer and hidden layer: dense_connections_W1)
there should be 3x1 dense connnections (between hidden layer and output layer: dense_connections_W2)
dense_connections_W1 = torch.randn(num_of_neurons_input_layer, num_of_neurons_hidden_layer)
dense_connections_W2 = torch.randn(num_of_neurons_hidden_layer, num_of_neurons_output_layer)

[21] # Q4: what should the activation be at each of the intermediate layers?
answer: let use sigmoid() activation function in the hidden layer
sigmoid_activation_hidden = nn.Sigmoid()

[22] # Q5: what should be activation of the final layer (let's assume we are using a binary classification task for which sigmoid ctivation is
sigmoid_activation_output = nn.Sigmoid()

CS 167: Machine Learning (Dr Alimoor Reza)

Recap: Forward Pass in our Multilayer Perceptron (MLP)

e Each neuron contains two operations:

e a dot product between a weight vector (edges in the graph) and an input vector, which
produces a number

e Then, that number through an activation function, which produces a number as an output

-0.56

Consider doing fi rd
Sample# AR -
n 1.5409961 -0.2934289 | > x,;=1.54099

x,=-0.2934

tput !

output = .
WoWiwa o 1 -+ exp™
wlx =[wy w Wz]{ 1.54 |X#[-0.56 0.66 0.62][1.54] = (=0.56) + 1.54%0.66 + (—0.293) % 0.66 = 0.263 T 1 +ex 0263
—0.293 (X2 —-0.293
. = 0.5653
Xo will always be 1.0

CS 167: Machine Learning (Dr Alimoor Reza)

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html

Recap: Forward Pass in our Multilayer Perceptron (MLP)

e Each neuron contains two operations:

e a dot product between a weight vector (edges in the graph) and an input vector, which
produces a number

e Then, that number through an activation function, which produces a number as an output

Consider doing fi rd
Sample# s o s i s \
X,=1.
1.5409961 -0.2934289 [1
1 D ~Jo.27

-0.45
x,=-0.2934 ~

output = HTP—WTX
wix =[wo wi W] | 154 [X£[-0.89 027 —045]| 1.54 | =(=0.89) + 1.54%0.27 + (=0.293) * (-0.45) =-034 1 + exp—(-034
—0.293 | X2 —0.293 _ 0415
Xo will always be 1.0

CS 167: Machine Learning (Dr Alimoor Reza)

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html

Recap: Forward Pass in our Multilayer Perceptron (MLP)

e Each neuron contains two operations:

e a dot product between a weight vector (edges in the graph) and an input vector, which
produces a number

e Then, that number through an activation function, which produces a number as an output

Consider doing fi rd .
Sample# AR - \
n 1.5409961 -0.2934289 | > x,;=1.54099

/

X,=-0.2934 —
1 0 1 — ;
wix=[wo wi wa]| 154 [X#[-0.058 0.06 —0.17]| 1.54 [=(=0.058)+1.54*0.06 + (—0.293) * (—0.17) = 0.084 1 + exp—0084
-0.293 |X2 -0.293 — 0.5%0
Xo will always be 1.0

CS 167: Machine Learning (Dr Alimoor Reza)

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html

Recap: Forward Pass in our Multilayer Perceptron (MLP)

e Each neuron contains two operations:

e a dot product between a weight vector (edges in the graph) and an input vector, which
produces a number

e Then, that number through an activation function, which produces a number as an output

We can collective do all these dot products in a single layer using a single matrix-matrix
multiplication torch.matmul() as follows.

Also add the bias-term aft®r computing the matrix multiplication

() matrix_mult_X_and_W1f= torch.matmul(randdm_X[0,:], dense_connections_W1l) + bias_terms_hidden
print('hidden layer I vector and ht vector dot products: \n', matrix_mult_X_and_W1.numpy())
output_hidden_layer = sigmoid_activation_hidden(matrix_mult_X_and_W1)

print('output of hidden layer: \n', output_hidden_layer.numpy())

hidden layer input vector and weight vector dot products:
[©.27377588 -0.3483593 0.08554165]

output of hidden layer:
[0.5680196 ©.41378036 0.5213724]

CS 167: Machine Learning (Dr Alimoor Reza)

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html

Recap: Forward Pass in our Multilayer Perceptron (MLP)

e Each neuron contains two operations:

e a dot product between a weight vector (edges in the graph) and an input vector, which

produces a number

e Then, that number through an activation function, which produces a number as an output
« We can collective do all these dot products in a single layer using a single matrix-matrix

multiplication torch.matmul() as follows.
e Also add the bias-term after computing the matrix multiplication

Consider doing fi rd
Sample# o
n 1.5409961 -0.2934289 [J> -

\ -0.20

Xo

X
1.0

1
0.5653

X2 -1.52
0415
0.38

-1.03
y Y %532’0
. 1
Xo will always be 1.0 output = ———_
1+exp WX
wTx = o wy wy wa] |09653[X1-020 - 1.52 038 —1.031 | %2033 | = (—0.20) 1 + (~1.52) % 0.5653 + 0.38 * 0.415 + (— 1.03) * (0.520) 1 4 exp—(-1437156)
0415 | X2 0.415
0.520 | X3 0.520 —0.191
= — 1.437156

CS 167: Machine Learning (Dr Alimoor Reza)

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html

Recap: Forward Pass in our Multilayer Perceptron (MLP)

0 matrix_mult_hidden_and_W2 = torch.matmul(output_hidden_layer, dense_connections_W2) + bias_terms_output
print('output of output layer: \n', matrix_mult_hidden_and_w2)
final_output = sigmoid_activation_output(matrix_mult_hidden_and_Ww2)
print(‘'output of hidden layer: \n', final_output.numpy())

output of output layer:
tensor([-1.4383])

output of hidden layer:
[0.1918079]

X0
X1
0.5653 1.0
. G \ ~0.20
) X2 =-1.52
1 0415
) 0.38
a)3’ -1.03
L 0.520
1
output = — 1.
1+exp WX
1 1 B 1
vIx = g Wy wy wy] 065461553 =[-020-152 038 —1.03] %5461553 = (=0.20)% 1 + (=1.52) % 0.5653 + 0.38 % 0.415 + (= 1.03)*(0.520] 1 + exp~(-1437156)
0520 0220 = 0.191
= — 1.437156

CS 167: Machine Learning (Dr Alimoor Reza)

Today’s Agenda

« Simple Multilayer Perceptrons (MLP) Implementation using PyTorch

e Basic functions and utilities
so that we don’t need to

explicitly apply functions
such as: torch.matmult()

CS 167: Machine Learning (Dr Alimoor Reza)

List of PyTorch Functions We Need

e nn.Linear()

creates the dense connections between two adjacent layers (left layer and right layer)
just provide #neurons_left_layer and #neurons_right_layer

e nn.RelLU(Q)

* nn.Softmax()

e nn.flatten()

e nn.Sequential()

e Let's jump into the notebook for a detailed discussion
o https://github.com/alimoorreza/CS167-fall24-notes/blob/main/Day20 MLP_with_PyTorch.ipynb

CS 167: Machine Learning (Dr Alimoor Reza)

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#relu
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html#softmax
https://pytorch.org/docs/stable/generated/torch.nn.Flatten.html
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html
https://github.com/alimoorreza/CS167-fall24-notes/blob/main/Day20_MLP_with_PyTorch.ipynb

nn.Linear() function

v Group Exercise#1

Create a new Linear layer with the following structure:

The first layer has 2 input nodes and 16 output nodes.

[1 # your code here
...

v Group Exercise#2

Apply a tensor through your linear layer now.

Change the value in torch.manual_seed(0) to something else, generate new inputs, and pass the tensor through your linear layer
again.

Observe the the output values.

[1 # your code here.
oean

CS 167: Machine Learning (Dr Alimoor Reza)

Activation Functions: nn.Sigmoid() nn.ReLU() etc

v Group Exercise#3

Experiment with different activation functions like sigmoid, tanh, and relu, and then pass a tensor through the linear layer you
created for Group Exercises #1 and #2.

Change the value in torch.manual_seed(2) to something else, generate new inputs, and pass the tensor through your linear layer
again.

Take a look at the output values and make sure they match what you were expecting!

CS 167: Machine Learning (Dr Alimoor Reza)

Combining everything to make an MLP

v Group Exercise#4

Let's create three Linear layers and connect them in sequence to build an MLP with the following structure:
The first layer has 2 input nodes and 3 output nodes.
The second layer takes 3 input nodes and outputs 6 nodes.

The final layer connects 6 input nodes to 2 output nodes.

[1 # your code here
...

v Group Exercise#5

Apply a tensor through your MLP now.

[1 # your code here
...

CS 167: Machine Learning (Dr Alimoor Reza)

Today’s Agenda

e Modular MLP Implementation using PyTorch
e structural aspect
» following the conventions of the research community

CS 167: Machine Learning (Dr Alimoor Reza)

Modular Code Multilayer Perceptron using MLP

A multilayer perceptron is the simplest type of neural network. It consists of perceptrons (aka nodes, neurons) arranged in layers. Create a
network class with two methods:

* init()
o forward()

© import torch
from torch import nn

You can give any name to your new network, e.g., SimpleMLP.

However, you have to mandatorily inherit from nn.Module to

create your own network class. That way, you can access a lot of
useful methods and attributes from the parent class nn.Module

class SimpleMLP(nn.Module):
def __init__ (self):
super().__init__ ()
your network layer construction should take place here
aan
eas

def forward(self, x):
your code for MLP forward pass should take place here
...
can
return x

CS 167: Machine Learning (Dr Alimoor Reza)

List of PyTorch Functions We Need

* nn.CrossEntropyl.oss()
e torch.optim.SGD

Training the network using loss function
Optimizer

e Let's jump into the notebook for a detailed discussion

e https://github.com/alimoorreza/CS167-fall24-notes/blob/main/
Day20 Building Modular MLP_ with PyTorch.ipynb

CS 167: Machine Learning (Dr Alimoor Reza)

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html#torch.optim.SGD
https://github.com/alimoorreza/CS167-fall24-notes/blob/main/Day20_Building_Modular_MLP_with_PyTorch.ipynb
https://github.com/alimoorreza/CS167-fall24-notes/blob/main/Day20_Building_Modular_MLP_with_PyTorch.ipynb

