
Modular Implementation of Multilayer Perceptron 
(MLP) with PyTorch


1CS143: Artificial Intelligence 

CS167: Machine Learning

CS 167: Machine Learning (Dr Alimoor Reza)

Wednesday, November 13th, 2024



CS 167: Machine Learning (Dr Alimoor Reza)

• Each of these questions need to be answered before you set up your 
multilayer perceptron

• Q1: how many hidden layers should be there? (depth)

• Q2: how many neurons should be in each layer? (width)

• Q3: how many dense connections should be there in between each 

adjacent layers

• Q4: what should the activation be at each of the intermediate layers?


• sigmoid(), tanh(), rectified-linear-unit(), etc


• Q5: what should be activation of the final layer

• depends the task classification (sigmoid(), 
softmax()) vs. regression

Recap: Important Design Questions for MLP



CS 167: Machine Learning (Dr Alimoor Reza)

Recap: Important Design Questions for MLP



CS 167: Machine Learning (Dr Alimoor Reza)

Recap: Important Design Questions for MLP

x1=?

x2=?

0.66

0.27

0.06

0.62

-0.45

-0.17

-0.56

-0.89

-0.058

-1.52

0.38

-1.03

-0.20

implies



CS 167: Machine Learning (Dr Alimoor Reza)

Recap: Important Design Questions for MLP



CS 167: Machine Learning (Dr Alimoor Reza)

• Each neuron contains two operations:

• a dot product between a weight vector (edges in the graph) and an input vector, which 

produces a number

• Then, that number through an activation function, which produces a number as an output


• We can collective do all these dot products in a single layer using a single matrix-matrix 
multiplication torch.matmul() as follows.


• Also add the bias-term after computing the matrix multiplication

Recap: Forward Pass in our Multilayer Perceptron (MLP)

x1=1.54099

x2=-0.2934

0.66

0.27

0.06

0.62

-0.45

-0.17

-0.56

-0.89

-0.058

-1.52

0.38

-1.03

-0.20

Sample# x1 x2

1 1.5409961 -0.2934289

2 -2.1787894 0.56843126

3 -1.0845224 -1.3985955

4 0.40334684 0.83802634

Consider doing forward 

pass for this example 0.5653

= [−0.56 0.66 0.62]
1

1.54
−0.293

= (−0.56) + 1.54 * 0.66 + (−0.293) * 0.66wTx = [w0 w1 w2]
1

1.54
−0.293

= 0.263

output 

=
1

1 + exp−0.263

=
1

1 + exp−wTx

= 0.5653

x0
w0

x1
x2

w1 w2

x0 will always be 1.0

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html


CS 167: Machine Learning (Dr Alimoor Reza)

• Each neuron contains two operations:

• a dot product between a weight vector (edges in the graph) and an input vector, which 

produces a number

• Then, that number through an activation function, which produces a number as an output


• We can collective do all these dot products in a single layer using a single matrix-matrix 
multiplication torch.matmul() as follows.


• Also add the bias-term after computing the matrix multiplication

Recap: Forward Pass in our Multilayer Perceptron (MLP)

x1=1.54099

x2=-0.2934

0.66

0.27

0.06

0.62

-0.45

-0.17

-0.56

-0.89

-0.058

-1.52

0.38

-1.03

-0.20

Sample# x1 x2

1 1.5409961 -0.2934289

2 -2.1787894 0.56843126

3 -1.0845224 -1.3985955

4 0.40334684 0.83802634

Consider doing forward 

pass for this example

= [−0.89 0.27 −0.45]
1

1.54
−0.293

= (−0.89) + 1.54 * 0.27 + (−0.293) * (−0.45)wTx = [w0 w1 w2]
1

1.54
−0.293

= − 0.34

0.415

output 

=
1

1 + exp−(−0.34)

=
1

1 + exp−wTx

= 0.415x0 will always be 1.0

x0
x1
x2

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html


CS 167: Machine Learning (Dr Alimoor Reza)

• Each neuron contains two operations:

• a dot product between a weight vector (edges in the graph) and an input vector, which 

produces a number

• Then, that number through an activation function, which produces a number as an output


• We can collective do all these dot products in a single layer using a single matrix-matrix 
multiplication torch.matmul() as follows.


• Also add the bias-term after computing the matrix multiplication

Recap: Forward Pass in our Multilayer Perceptron (MLP)

x1=1.54099

x2=-0.2934

0.66

0.27

0.06

0.62

-0.45

-0.17

-0.56

-0.89

-0.058

-1.52

0.38

-1.03

-0.20

Sample# x1 x2

1 1.5409961 -0.2934289

2 -2.1787894 0.56843126

3 -1.0845224 -1.3985955

4 0.40334684 0.83802634

Consider doing forward 

pass for this example

= [−0.058 0.06 −0.17]
1

1.54
−0.293

= (−0.058) + 1.54 * 0.06 + (−0.293) * (−0.17)wTx = [w0 w1 w2]
1

1.54
−0.293

= 0.084

0.520

output 

=
1

1 + exp−0.084

=
1

1 + exp−wTx

= 0.520x0 will always be 1.0

x0
x1
x2

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html


CS 167: Machine Learning (Dr Alimoor Reza)

• Each neuron contains two operations:

• a dot product between a weight vector (edges in the graph) and an input vector, which 

produces a number

• Then, that number through an activation function, which produces a number as an output


• We can collective do all these dot products in a single layer using a single matrix-matrix 
multiplication torch.matmul() as follows.


• Also add the bias-term after computing the matrix multiplication

Recap: Forward Pass in our Multilayer Perceptron (MLP)

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html


CS 167: Machine Learning (Dr Alimoor Reza)

• Each neuron contains two operations:

• a dot product between a weight vector (edges in the graph) and an input vector, which 

produces a number

• Then, that number through an activation function, which produces a number as an output


• We can collective do all these dot products in a single layer using a single matrix-matrix 
multiplication torch.matmul() as follows.


• Also add the bias-term after computing the matrix multiplication

Recap: Forward Pass in our Multilayer Perceptron (MLP)

x1=1.54099

x2=-0.2934

0.66

0.27

0.06

0.62

-0.45

-0.17

-0.56

-0.89

-0.058

-1.52

0.38

-1.03

Sample# x1 x2

1 1.5409961 -0.2934289

2 -2.1787894 0.56843126

3 -1.0845224 -1.3985955

4 0.40334684 0.83802634

Consider doing forward 

pass for this example

= [−0.20 − 1.52 0.38 −1.03]

1
0.5653
0.415
0.520

= (−0.20) * 1 + (−1.52) * 0.5653 + 0.38 * 0.415 + (−1.03) * (0.520)wTx = [w0 w1 w2 w3]

1
0.5653
0.415
0.520

= − 1.437156

0.520

output 

=
1

1 + exp−(−1.437156)

=
1

1 + ex p−wTx

= 0.191

0.415

0.5653

x0 will always be 1.0
x0
x1
x2
x3

x0
x1

x2

x3

1.0

-0.20

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html


CS 167: Machine Learning (Dr Alimoor Reza)

Recap: Forward Pass in our Multilayer Perceptron (MLP)

x1=1.54099

x2=-0.2934

0.66

0.27

0.06

0.62

-0.45

-0.17

-0.56

-0.89

-0.058

-1.52

0.38

-1.03

= [−0.20 − 1.52 0.38 −1.03]

1
0.5653
0.415
0.520

= (−0.20) * 1 + (−1.52) * 0.5653 + 0.38 * 0.415 + (−1.03) * (0.520)wTx = [w0 w1 w2 w3]

1
0.5653
0.415
0.520

0.520

output 

=
1

1 + exp−(−1.437156)

=
1

1 + ex p−wTx

= 0.191

0.415

0.5653

= − 1.437156

x0

1.0

-0.20

x1

x2

x3



CS 167: Machine Learning (Dr Alimoor Reza)

Today’s Agenda

• Modular MLP Implementation using PyTorch

• structural aspect

• following the convention of research community

• Simple Multilayer Perceptrons (MLP) Implementation using PyTorch

• Basic functions and utilities 

so that we don’t need to 
explicitly apply functions 
such as: torch.matmult()



CS 167: Machine Learning (Dr Alimoor Reza)

• nn.Linear() 
creates the dense connections between two adjacent layers (left layer and right layer)

just provide #neurons_left_layer and #neurons_right_layer 


• nn.ReLU()
• nn.Softmax()
• nn.flatten()
• nn.Sequential()

List of PyTorch Functions We Need

• Let's jump into the notebook for a detailed discussion

• https://github.com/alimoorreza/CS167-fall24-notes/blob/main/Day20_MLP_with_PyTorch.ipynb

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#relu
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html#softmax
https://pytorch.org/docs/stable/generated/torch.nn.Flatten.html
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html
https://github.com/alimoorreza/CS167-fall24-notes/blob/main/Day20_MLP_with_PyTorch.ipynb


CS 167: Machine Learning (Dr Alimoor Reza)

nn.Linear() function



CS 167: Machine Learning (Dr Alimoor Reza)

Activation Functions: nn.Sigmoid() nn.ReLU() etc



CS 167: Machine Learning (Dr Alimoor Reza)

Combining everything to make an MLP



CS 167: Machine Learning (Dr Alimoor Reza)

Today’s Agenda

• Modular MLP Implementation using PyTorch

• structural aspect

• following the conventions of the research community

• Simple Multilayer Perceptrons (MLP) Implementation using PyTorch

• Basic functions and utilities 



CS 167: Machine Learning (Dr Alimoor Reza)

Modular Code Multilayer Perceptron using MLP



CS 167: Machine Learning (Dr Alimoor Reza)

• nn.CrossEntropyLoss()
• torch.optim.SGD

Training the network using loss function

Optimizer

List of PyTorch Functions We Need

• Let's jump into the notebook for a detailed discussion

• https://github.com/alimoorreza/CS167-fall24-notes/blob/main/

Day20_Building_Modular_MLP_with_PyTorch.ipynb

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html#torch.optim.SGD
https://github.com/alimoorreza/CS167-fall24-notes/blob/main/Day20_Building_Modular_MLP_with_PyTorch.ipynb
https://github.com/alimoorreza/CS167-fall24-notes/blob/main/Day20_Building_Modular_MLP_with_PyTorch.ipynb

