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• Each of these questions need to be answered before you set up your 
multilayer perceptron 
• Q1: how many hidden layers should be there? (depth) 
• Q2: how many neurons should be in each layer? (width) 
• Q3: how many dense connections should be there in between each 

adjacent layers 
• Q4: what should the activation be at each of the intermediate layers? 

• sigmoid(), tanh(), rectified-linear-unit(), etc

• Q5: what should be activation of the final layer 
• depends the task classification (sigmoid(), 
softmax()) vs. regression

Recap: Important Design Questions for MLP
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Recap: Important Design Questions for MLP
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• Each neuron contains two operations: 
• a dot product between a weight vector (edges in the graph) and an input vector, which 

produces a number 
• Then, that number through an activation function, which produces a number as an output 

• We can collective do all these dot products in a single layer using a single matrix-matrix 
multiplication torch.matmul() as follows. 

• Also add the bias-term after computing the matrix multiplication

Recap: Forward Pass in our Multilayer Perceptron (MLP)
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Sample# x1 x2

1 1.5409961 -0.2934289

2 -2.1787894 0.56843126

3 -1.0845224 -1.3985955

4 0.40334684 0.83802634
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https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html
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• Each neuron contains two operations: 
• a dot product between a weight vector (edges in the graph) and an input vector, which 

produces a number 
• Then, that number through an activation function, which produces a number as an output 

• We can collective do all these dot products in a single layer using a single matrix-matrix 
multiplication torch.matmul() as follows. 

• Also add the bias-term after computing the matrix multiplication

Recap: Forward Pass in our Multilayer Perceptron (MLP)
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https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html
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• Each neuron contains two operations: 
• a dot product between a weight vector (edges in the graph) and an input vector, which 

produces a number 
• Then, that number through an activation function, which produces a number as an output 

• We can collective do all these dot products in a single layer using a single matrix-matrix 
multiplication torch.matmul() as follows. 

• Also add the bias-term after computing the matrix multiplication

Recap: Forward Pass in our Multilayer Perceptron (MLP)
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Consider doing forward  
pass for this example
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https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html
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• Each neuron contains two operations: 
• a dot product between a weight vector (edges in the graph) and an input vector, which 

produces a number 
• Then, that number through an activation function, which produces a number as an output 

• We can collective do all these dot products in a single layer using a single matrix-matrix 
multiplication torch.matmul() as follows. 

• Also add the bias-term after computing the matrix multiplication

Recap: Forward Pass in our Multilayer Perceptron (MLP)

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html
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• Each neuron contains two operations: 
• a dot product between a weight vector (edges in the graph) and an input vector, which 

produces a number 
• Then, that number through an activation function, which produces a number as an output 

• We can collective do all these dot products in a single layer using a single matrix-matrix 
multiplication torch.matmul() as follows. 

• Also add the bias-term after computing the matrix multiplication

Recap: Forward Pass in our Multilayer Perceptron (MLP)
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https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html
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Recap: Forward Pass in our Multilayer Perceptron (MLP)
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Today’s Agenda

• Modular MLP Implementation using PyTorch 
• structural aspect 
• following the convention of research community

• Simple Multilayer Perceptrons (MLP) Implementation using PyTorch 
• Basic functions and utilities 

so that we don’t need to 
explicitly apply functions 
such as: torch.matmult()
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• nn.Linear() 
creates the dense connections between two adjacent layers (left layer and right layer)
just provide #neurons_left_layer and #neurons_right_layer 

• nn.ReLU()
• nn.Softmax()
• nn.flatten()
• nn.Sequential()

List of PyTorch Functions We Need

• Let's jump into the notebook for a detailed discussion 
• https://github.com/alimoorreza/CS167-fall24-notes/blob/main/Day20_MLP_with_PyTorch.ipynb

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#relu
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html#softmax
https://pytorch.org/docs/stable/generated/torch.nn.Flatten.html
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html
https://github.com/alimoorreza/CS167-fall24-notes/blob/main/Day20_MLP_with_PyTorch.ipynb
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nn.Linear() function
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Activation Functions: nn.Sigmoid() nn.ReLU() etc
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Combining everything to make an MLP
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Today’s Agenda

• Modular MLP Implementation using PyTorch 
• structural aspect 
• following the conventions of the research community

• Simple Multilayer Perceptrons (MLP) Implementation using PyTorch 
• Basic functions and utilities 
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Modular Code Multilayer Perceptron using MLP
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• nn.CrossEntropyLoss()
• torch.optim.SGD

Training the network using loss function
Optimizer

List of PyTorch Functions We Need

• Let's jump into the notebook for a detailed discussion 
• https://github.com/alimoorreza/CS167-fall24-notes/blob/main/

Day20_Building_Modular_MLP_with_PyTorch.ipynb

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html#torch.optim.SGD
https://github.com/alimoorreza/CS167-fall24-notes/blob/main/Day20_Building_Modular_MLP_with_PyTorch.ipynb
https://github.com/alimoorreza/CS167-fall24-notes/blob/main/Day20_Building_Modular_MLP_with_PyTorch.ipynb

