
PyTorch Basics

A Simple Implementation of Multilayer Perceptron (MLP) 

with PyTorch


1CS143: Artificial Intelligence 

CS167: Machine Learning

CS 167: Machine Learning (Dr Alimoor Reza)

Monday, November 11th, 2024



CS 167: Machine Learning (Dr Alimoor Reza)

Recap: Last Class

• Multilayer Perceptrons (MLP)

• MLP Structure

• Learning MLP Weight Parameters

• Connections with biology: natural neurons vs. artificial neurons

• Recap from last week’s offline lecture

• Trainable parameters and their learnable weights



CS 167: Machine Learning (Dr Alimoor Reza)

Σxi

x1

xn

w
1

w
2

w
i

w
n

w
0

g()

x2

Recap: Natural neurons vs. artificial neurons

Synapses (a.k.a. synaptic connections)

Right neuron’s 


dendritesLeft neuron’s Axon 

acts as an output

Output

Output

Natural neuron

An artificial (machine) neuron



CS 167: Machine Learning (Dr Alimoor Reza)

Recap: 1-Hidden Layer Neural Network

input

input

input

Input Layer Hidden Layer

outputs 6

Output Layer

outputs 1 
goes into 
neuron 4

outputs 2 
goes into 
neuron 5

outputs 2 
goes into 
neuron 4

outputs 3 
goes into 
neuron 5

outputs 3 
goes into 
neuron 4

outputs 4 
goes into 
neuron 6

outputs 5 
goes into 
neuron 6

• We created our first multilayer perceptron (MLP)


• Any layers in between input layer and output layer are called hidden layers


• Hence this MLP can also be called 1-hidden layer neural network

outputs 1 
also goes into 
neuron 5

Neurons in the input layer do not have activation functions



CS 167: Machine Learning (Dr Alimoor Reza)

• Each of these questions need to be answered before you set up your neural 
network:

• how many hidden layers should I have? (depth)

• how many neurons should be in each layer? (width)

• what should your activation be at each of the layers?

Recap: MLP (Network) Structure

…

…

…



• In general, the complexity of your network should match the complexity of 
your problem. The final output nodes should be related to what kind of 
problem you are solving

Recap: Final Output Nodes

…

…

…

CS 167: Machine Learning (Dr Alimoor Reza)



Recap: Training to Learn MLP (Network) Structure 
Parameters

CS 167: Machine Learning (Dr Alimoor Reza)

• The specific name for the weight learning algorithm is Backpropagation. It is glorified name 
but it is gradient descent under the hood.


• It tunes the weights over a neural network using gradient descent to iteratively reduce the 
error in the network.

Image reference

https://www.kdnuggets.com/2019/10/introduction-artificial-neural-networks.html


CS 167: Machine Learning (Dr Alimoor Reza)

Recap: Last Class

• Multilayer Perceptrons (MLP)

• MLP Structure

• Learning MLP Weight Parameters

• Connections with biology: natural neurons vs. artificial neurons

• Recap from previous week’s offline lecture

• Trainable parameters and their learnable weights



Training to Learn MLP (Network) Structure 
Parameters

CS 167: Machine Learning (Dr Alimoor Reza)

• The trainable parameters are the weights (w’s) which are learned from the 
training data

x1

x2

?

?

?

?

?

?

?

?

? ?

?

?

?



• The goal is to minimize the error predicted by the network (from last 
lecture) from the training data


• Gradient Descent


• Stochastic Gradient descent

Training to Learn MLP (Network) Structure 
Parameters

CS 167: Machine Learning (Dr Alimoor Reza)

• Gradient Descent

• calculate the gradient vector based on that batch

• adjust (or update) the values of the weights based on the gradient vector 

to that batch
wnew = wold − η∇E(w)

∇E(w)

x1

x2

?
?
?

?
?
?

?

?

? ?
?
?

?



Training to Learn MLP (Network) Structure 
Parameters

CS 167: Machine Learning (Dr Alimoor Reza)

• The specific name for the weight learning algorithm is Backpropagation. It is glorified name 
but it is gradient descent under the hood.


• It tunes the weights over a neural network using gradient descent to iteratively reduce the 
error in the network.

Image reference

https://www.kdnuggets.com/2019/10/introduction-artificial-neural-networks.html


CS 167: Machine Learning (Dr Alimoor Reza)

• MLPs are effective in finding non-linear patterns in the training data

• can be applied to regression or classification.

• backpropagation tunes the weights over a neural network using 

gradient descent to iteratively reduce the error in the network

• overfitting the training data is common and is important to avoid

• the following parameters should be tuned when using MLPs:


• number of epochs

• structure of the network (depth, width)

• activation function

• eta (learning rate)

MLP Summary

…

…

…



CS 167: Machine Learning (Dr Alimoor Reza)

• MLPs are effective in finding non-linear patterns in the training data

Tinker with the Following to See MLP in Action

https://playground.tensorflow.org

http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.44693&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


CS 167: Machine Learning (Dr Alimoor Reza)

Today’s Agenda

• PyTorch Basics

• Simple Multilayer Perceptrons (MLP) Implementation using PyTorch



CS 167: Machine Learning (Dr Alimoor Reza)

• PyTorch is machine learning framework based on Torch library. It has a 
Python interface.


• This is a very popular framework for building and deploying deep learning 
application including MLP, and other future models we will learn about in 
this course


• Colab and Kaggle both has PyTorch support hence we can readily run our 
PyTorch code without worrying about the installation. But optionally, if you 
have GPU in your workstation (laptop/desktop), you can install a fresh copy 
of PyTorch there.

PyTorch

https://pytorch.org/

https://pytorch.org/


CS 167: Machine Learning (Dr Alimoor Reza)

PyTorch

https://pytorch.org/

• Go to Blackboard and work on the notebook titled "PyTorch Basics."

https://pytorch.org/


CS 167: Machine Learning (Dr Alimoor Reza)

PyTorch

https://pytorch.org/

• Upload your notebook to Blackboard (under ‘Assignment’ section) once completed!

https://pytorch.org/


CS 167: Machine Learning (Dr Alimoor Reza)

Today’s Agenda

• PyTorch Basics

• Simple Multilayer Perceptrons (MLP) Implementation using PyTorch



CS 167: Machine Learning (Dr Alimoor Reza)

• A multilayer perceptron is the simplest type of neural network. It consists 
of perceptrons (aka nodes, neurons) arranged in layers

Generate Random Samples for the MLP Below

Sample# x1 x2

1 1.5409961 -0.2934289

2 -2.1787894 0.56843126

3 -1.0845224 -1.3985955

4 0.40334684 0.83802634

Consider doing forward 

pass for this example

x1=1.54099

x2=-0.2934

?

?

?

?

?

?

?

?

?

?

?

?

?



CS 167: Machine Learning (Dr Alimoor Reza)

• Each of these questions need to be answered before you set up your 
multilayer perceptron

• Q1: how many hidden layers should be there? (depth)

• Q2: how many neurons should be in each layer? (width)

• Q3: how many dense connections should be there in between each 

adjacent layers

• Q4: what should the activation be at each of the intermediate layers?


• sigmoid(), tanh(), rectified-linear-unit(), etc


• Q5: what should be activation of the final layer

• depends the task classification (sigmoid(), 
softmax()) vs. regression

Important Design Questions for MLP



CS 167: Machine Learning (Dr Alimoor Reza)

Important Design Questions for MLP



CS 167: Machine Learning (Dr Alimoor Reza)

Important Design Questions for MLP

x1=?

x2=?

0.66

0.27

0.06

0.62

-0.45

-0.17

-0.56

-0.89

-0.058

-1.52

0.38

-1.03

-0.20

implies



CS 167: Machine Learning (Dr Alimoor Reza)

Important Design Questions for MLP



CS 167: Machine Learning (Dr Alimoor Reza)

• Each neuron contains two operations:

• a dot product between a weight vector (edges in the graph) and an input vector, which 

produces a number

• Then, that number through an activation function, which produces a number as an output


• We can collective do all these dot products in a single layer using a single matrix-matrix 
multiplication torch.matmul() as follows.


• Also add the bias-term after computing the matrix multiplication

Forward Pass in our Multilayer Perceptron (MLP)

x1=1.54099

x2=-0.2934

0.66

0.27

0.06

0.62

-0.45

-0.17

-0.56

-0.89

-0.058

-1.52

0.38

-1.03

-0.20

Sample# x1 x2

1 1.5409961 -0.2934289

2 -2.1787894 0.56843126

3 -1.0845224 -1.3985955

4 0.40334684 0.83802634

Consider doing forward 

pass for this example 0.5653

= [−0.56 0.66 0.62]
1

1.54
−0.293

= (−0.56) + 1.54 * 0.66 + (−0.293) * 0.66wTx = [w0 w1 w2]
1

1.54
−0.293

= 0.263

output 

=
1

1 + exp−0.263

=
1

1 + exp−wTx

= 0.5653

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html


CS 167: Machine Learning (Dr Alimoor Reza)

• Each neuron contains two operations:

• a dot product between a weight vector (edges in the graph) and an input vector, which 

produces a number

• Then, that number through an activation function, which produces a number as an output


• We can collective do all these dot products in a single layer using a single matrix-matrix 
multiplication torch.matmul() as follows.


• Also add the bias-term after computing the matrix multiplication

Forward Pass in our Multilayer Perceptron (MLP)

x1=1.54099

x2=-0.2934

0.66

0.27

0.06

0.62

-0.45

-0.17

-0.56

-0.89

-0.058

-1.52

0.38

-1.03

-0.20

Sample# x1 x2

1 1.5409961 -0.2934289

2 -2.1787894 0.56843126

3 -1.0845224 -1.3985955

4 0.40334684 0.83802634

Consider doing forward 

pass for this example

= [−0.89 0.27 −0.45]
1

1.54
−0.293

= (−0.89) + 1.54 * 0.27 + (−0.293) * (−0.45)wTx = [w0 w1 w2]
1

1.54
−0.293

= − 0.34

0.415

output 

=
1

1 + exp−(−0.34)

=
1

1 + exp−wTx

= 0.415

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html


CS 167: Machine Learning (Dr Alimoor Reza)

• Each neuron contains two operations:

• a dot product between a weight vector (edges in the graph) and an input vector, which 

produces a number

• Then, that number through an activation function, which produces a number as an output


• We can collective do all these dot products in a single layer using a single matrix-matrix 
multiplication torch.matmul() as follows.


• Also add the bias-term after computing the matrix multiplication

Forward Pass in our Multilayer Perceptron (MLP)

x1=1.54099

x2=-0.2934

0.66

0.27

0.06

0.62

-0.45

-0.17

-0.56

-0.89

-0.058

-1.52

0.38

-1.03

-0.20

Sample# x1 x2

1 1.5409961 -0.2934289

2 -2.1787894 0.56843126

3 -1.0845224 -1.3985955

4 0.40334684 0.83802634

Consider doing forward 

pass for this example

= [−0.058 0.06 −0.17]
1

1.54
−0.293

= (−0.058) + 1.54 * 0.06 + (−0.293) * (−0.17)wTx = [w0 w1 w2]
1

1.54
−0.293

= 0.084

0.520

output 

=
1

1 + exp−0.084

=
1

1 + exp−wTx

= 0.520

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html


CS 167: Machine Learning (Dr Alimoor Reza)

• Each neuron contains two operations:

• a dot product between a weight vector (edges in the graph) and an input vector, which 

produces a number

• Then, that number through an activation function, which produces a number as an output


• We can collective do all these dot products in a single layer using a single matrix-matrix 
multiplication torch.matmul() as follows.


• Also add the bias-term after computing the matrix multiplication

Forward Pass in our Multilayer Perceptron (MLP)

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html


CS 167: Machine Learning (Dr Alimoor Reza)

• Each neuron contains two operations:

• a dot product between a weight vector (edges in the graph) and an input vector, which 

produces a number

• Then, that number through an activation function, which produces a number as an output


• We can collective do all these dot products in a single layer using a single matrix-matrix 
multiplication torch.matmul() as follows.


• Also add the bias-term after computing the matrix multiplication

Forward Pass in our Multilayer Perceptron (MLP)

x1=1.54099

x2=-0.2934

0.66

0.27

0.06

0.62

-0.45

-0.17

-0.56

-0.89

-0.058

-1.52

0.38

-1.03

-0.20

Sample# x1 x2

1 1.5409961 -0.2934289

2 -2.1787894 0.56843126

3 -1.0845224 -1.3985955

4 0.40334684 0.83802634

Consider doing forward 

pass for this example

= [1 − 1.52 0.38 −1.03]

−0.20
0.5653
0.415
0.520

= 1 * (−0.20) + (−1.52) * 0.5653 + 0.38 * 0.415 + (−1.03) * (0.520)wTx = [w0 w1 w2 w3]

−0.20
0.5653
0.415
0.520

= − 1.437156

0.520

output 

=
1

1 + exp−(−1.437156)

=
1

1 + ex p−wTx

= 0.191

0.415

0.5653

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html


CS 167: Machine Learning (Dr Alimoor Reza)

Forward Pass in our Multilayer Perceptron (MLP)

x1=1.54099

x2=-0.2934

0.66

0.27

0.06

0.62

-0.45

-0.17

-0.56

-0.89

-0.058

-1.52

0.38

-1.03

-0.20

= [1 − 1.52 0.38 −1.03]

−0.20
0.5653
0.415
0.520

= 1 * (−0.20) + (−1.52) * 0.5653 + 0.38 * 0.415 + (−1.03) * (0.520)wTx = [w0 w1 w2 w3]

−0.20
0.5653
0.415
0.520

0.520

output 

=
1

1 + exp−(−1.437156)

=
1

1 + ex p−wTx

= 0.191

0.415

0.5653



CS 167: Machine Learning (Dr Alimoor Reza)

• A multilayer perceptron is the simplest type of neural network. It 
consists of perceptrons (aka nodes, neurons) arranged in layers

Next lecture: Modular Code Multilayer Perceptron 
using MLP

x1, x2,x3, …,x784

P(image=

dog)

h1, h2, h3, …, h512

y1, y2

Input layer 1st Hidden layer Output layer2nd Hidden layer

h1, h2, h3, …, h256

image

28x28

P(image=

not dog)

PyTorch

Flatten()

x1

x2

x3

x784

28x28 = 784

…


