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Recap: Last Class

e Learning MLP Weight Parameters

e Recap from last week’s offline lecture

« Trainable parameters and their learnable weights
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Recap: Natural neurons vs. artificial neurons

Right neuron’s
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acts as an output
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Recap: 1-Hidden Layer Neural Network
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Neurons in the input layer do not have activation functions

Input Layer

We created our first multilayer perceptron (MLP)
Any layers in between input layer and output layer are called
Hence this MLP can also be called 1-hidden layer neural network

outputs 4
goes into
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outputs 5
goes into
neuron 6

Output Layer
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Recap: MLP (Network) Structure

e Each of these questions need to be answered before you set up your neural
network:

« how many hidden layers should | have? (depth)
e how many neurons should be in each layer? (width)
» what should your activation be at each of the layers?
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Recap: Final Output Nodes

e In general, the complexity of your network should match the complexity of
your problem. The final output nodes should be related to what kind of
problem you are solving

Sigmoid ‘
o(z) = 1+(11-1
tanh I

tanh(z)
ReLU »
max(0, z) , .
Activation Function Function Lower bound Upper bound Type of Machine Learning
Linear f(2) —00 00 regression where results can be negative
= az
relu(z)
Rectified Linear Unit (ReLU) = max 0 00 regression where results can't be negative
0, z)
sigmoid
Sigmoid (z) 0 1 binary classification
_ 1
14+e~*
softmax
Softmax (1) 0 1 multiclass classification
_exp(z;)
- 2, exp(z))
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Recap: Training to Learn MLP (Network) Structure
Parameters

« The specific name for the weight learning algorithm is Backpropagation. It is glorified name
but it is gradient descent under the hood.

« It tunes the weights over a neural network using gradient descent to iteratively reduce the
error in the network.

Feed new data

\%

X1

X2 Y_pred

X3 N\

inputlayer  Hidden Layer | Hidden Layer2  Outpin Layer Error
N/
Y

Image reference
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https://www.kdnuggets.com/2019/10/introduction-artificial-neural-networks.html

Recap: Last Class

e Learning MLP Weight Parameters

e Recap from previous week’s offline lecture

« Trainable parameters and their learnable weights
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Training to Learn MLP (Network) Structure
Parameters

e The trainable parameters are the weights (w’s) which are learned from the
training data
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Training to Learn MLP (Network) Structure
Parameters

,,
N7 Do ¥
: 2O
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f?

« The goal is to minimize the error predicted by the network (from last
lecture) from the training data

e Gradient Descent
e Stochastic Gradient descent

e Gradient Descent

« calculate the gradient vector based on that batch V E(w)

« adjust (or update) the values of the weights based on the gradient vector
to that batch

whew — Wold - VE(W)

CS 167: Machine Learning (Dr Alimoor Reza)




Training to Learn MLP (Network) Structure
Parameters

« The specific name for the weight learning algorithm is Backpropagation. It is glorified name
but it is gradient descent under the hood.

« It tunes the weights over a neural network using gradient descent to iteratively reduce the
error in the network.

Feed new data
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MLP Summary

e MLPs are effective in finding non-linear patterns in the training data
e can be applied to regression or classification.

e backpropagation tunes the weights over a neural network using
gradient descent to iteratively reduce the error in the network

« overfitting the training data is common and is important to avoid
» the following parameters should be tuned when using MLPs:

e number of epochs

e structure of the network (depth, width)

 activation function

e eta (learning rate)

CS 167: Machine Learning (Dr Alimoor Reza)




Tinker with the Following to See MLP in Action

e MLPs are effective in finding non-linear patterns in the training data

Q-

DATA

Which dataset do
you want to use?

{8

Ratio of training to
test data: 50%
—oe

Noise: 0
[ J

Batch size: 10
—e

REGENERATE

Epoch

000,000

FEATURES

Which properties do
you want to feed in?

X1

3
45

Learning rate
0.03 v
+
+ -
4 neurons

oooo

This is the output
from one neuron.
Hover to see it
larger.

Activation

Tanh

Regularization

v None v

2 HIDDEN LAYERS

+ -

2 neurons

The outputs are
mixed with varying
waights, shown by

the thickness of
the fines.

Regularization rate Problem type

0 v Classification v

OUTPUT

Test loss 0.504
Training loss 0.514

Colors shows
data, neuron and F [ 1
weight values.

https://playground.tensorflow.org
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http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.44693&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

Today’s Agenda

e PyTorch Basics
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PyTorch

e PyTorch is machine learning framework based on Torch library. It has a
Python interface.

« This is a very popular framework for building and deploying deep learning
application including MLP, and other future models we will learn about in
this course

« Colab and Kaggle both has PyTorch support hence we can readily run our
PyTorch code without worrying about the installation. But optionally, if you
have GPU in your workstation (laptop/desktop), you can install a fresh copy
of PyTorch there.

https://pytorch.org/
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https://pytorch.org/

PyTorch

» Go to Blackboard and work on the notebook titled "PyTorch Basics.”

2 @ Day19: PyTorch Basics
& Visible to students ~

i GD Day#19 Notebook: PyTorch Basics
® Visible to students ~

https://pytorch.org/
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https://pytorch.org/

PyTorch

« Upload your notebook to Blackboard (under ‘Assignment’ section) once completed!

+ In-class activity#4 - PyTorch basics
& Visible to students v

Due date: 11/12/24, 11:59 PM

upload your notebook

3t In-class activity #3 (linear models, perceptron)
® Visible to students
Due date: 10/28/24, 11:59 PM

3t In-class activity#2: Entropy for Decision Tree
& Visible to students ~

Due date: 10/4/24, 11:59 PM

Paper-based in-class activity.

: In-class activity#1 (k-NN regression)

® Visible to students

Due date: 10/2/24, 11:59 PM

Complete the group activity from class today and upload your notebook. Here is the reference notebook: https://github.com/alimoorreza/CS167-fall24-notes/blob/main/
Day09_Metrics_and_Testing.ipynb

https://pytorch.org/
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https://pytorch.org/

Today’s Agenda

e Simple Multilayer Perceptrons (MLP) Implementation using PyTorch
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Generate Random Samples for the MLP Below

« A multilayer perceptron is the simplest type of neural network. It consists
of perceptrons (aka nodes, neurons) arranged in layers

# let's generate 4 random samples of (x1, x2) for the above network

torch.manual_seed(0)

random_X = torch.randn(4,2) # you could imagine that these are pairs of (x1, x2) as shown in the above table
print('random_X = \n', random_X.numpy())

input_feature_size = random_X.shape[1l] # number of columns corresponds to feature dimension

print('\n\ninput feature dimension: ', input_feature_size)

x,=1.54099

Sample# o

pass for this example
1.5409961 -0.2934289 I J>

-2.1787894 0.56843126

-1.0845224 -1.3985955

0.40334684 0.83802634 X,=-0.2934
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Important Design Questions for MLP

e Each of these questions need to be answered before you set up your
multilayer perceptron

e Q1: how many hidden layers should be there? (depth)
e Q2: how many neurons should be in each layer? (width)

e Q3: how many dense connections should be there in between each
adjacent layers

e Q4: what should the activation be at each of the intermediate layers?
e sigmoid(), tanh(), rectified-linear-unit(), etc
e Q5: what should be activation of the final layer

e depends the task classification (sigmoid(),
softmax()) vs. regression
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Important Design Questions for MLP

© torch.manual_seed(1) # for reproducibility
# Q1: how many hidden layers should be there? (depth)
# answer: there is only 1 hidden layer
num_of_hidden_layer = 1

# Q2: how many neurons should be in each layer? (width)
# answer: there are 2 neurons in the input Tlayer

# there are 3 neurons in the hidden layer

# there are 1 neurons in the output layer

num_of_neurons_input_layer = 2

#num_of_neurons_input_layer = input_feature_size # also can be assigned from 'input_feature_size' (which we computed in the previous cell
num_of_neurons_hidden_layer = 3

num_of_neurons_output_layer = 1

# Q3 how many dense connections should be there in between each adjacent layers

# answer: there should be 2x3 dense connnections (between input Tlayer and hidden layer: dense_connections_W1)

# there should be 3x1 dense connnections (between hidden layer and output layer: dense_connections_W2)
dense_connections_W1 = torch.randn(num_of_neurons_input_layer, num_of_neurons_hidden_layer)

dense_connections_W2 = torch.randn(num_of_neurons_hidden_layer, num_of_neurons_output_layer)

print('Random initialized weights between input 1layer and hidden layer: dense_connections_W1=\n', dense_connections_W1.numpy())
print('Random initialized weights between input 1layer and hidden layer: dense_connections_W2=\n', dense_connections_W2.numpy())
# add the bias terms for all the layers except input layer

bias_terms_hidden = torch.randn(num_of_neurons_hidden_layer)

bias_terms_output = torch.randn(num_of_neurons_output_layer)

print('bias_terms_hidden:\n', bias_terms_hidden.numpy())

print('bias_terms_output:\n', bias_terms_output.numpy())

Random initialized weights between input layer and hidden layer: dense_connections_W1=
[[ 0.66135216 ©0.2669241 0.06167726]
[ 9.6213173 -0.45190597 -0.16613023]]
Random initialized weights between input layer and hidden layer: dense_connections_W2=
[[-1.5227685 ]
[ 0.38168392]
[-1.0276086 ]1]
bias_terms_hidden:
[-0.5630528 -0.89229053 -0.05825018]
bias_terms_output:
[-0.19550958]
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©

Random initialized weights between input layer and hidden layer: dense_connections_W1=

[[ 0.66135216

[ 0.6213173 -0.45190597 -0.16613023]]
Random initialized weights between input layer and hidden layer: dense_connections_W2=

[[-1.5227685 ]
[ 0.38168392]
[-1.0276086 1]

bias_terms_hidden: :

[-0.5630528 -0.89229053 -0.05825018]
bias_terms_output:

[-0.19550958]

Important Design Questions for MLP

torch.manual_seed(1) # for reproducibility

# Ql: how many hidden layers should be there? (depth)
# answer: there is only 1 hidden layer
num_of_hidden_layer = 1

# Q2: how many neurons should be in each layer? (width)
# answer: there are 2 neurons in the input layer

# there are 3 neurons in the hidden layer
# there are 1 neurons in the output layer
num_of_neurons_input_layer = 2

#num_of_neurons_input_layer = input_feature_size # also can be assigned from 'input_feature_size' (which we computed in the previous cell
num_of_neurons_hidden_layer = 3
num_of_neurons_output_layer = 1

# Q3 how many dense connections should be there in between each adjacent layers

# answer: there should be 2x3 dense connnections (between input 1layer and hidden layer: dense_connections_W1)

# there should be 3x1 dense connnections (between hidden layer and output layer: dense_connections_W2)
dense_connections_W1 = torch.randn(num_of_neurons_input_layer, num_of_neurons_hidden_layer)

dense_connections_W2 = torch.randn(num_of_neurons_hidden_layer, num_of_neurons_output_layer)

print('Random initialized weights between input 1layer and hidden layer: dense_connections_W1l=\n', dense_connections_W1.numpy())
print('Random initialized weights between input 1layer and hidden layer: dense_connections_W2=\n', dense_connections_W2.numpy())
# add the bias terms for all the layers except input layer

bias_terms_hidden = torch.randn(num_of_neurons_hidden_layer)

bias_terms_output = torch.randn(num_of_neurons_output_layer)

print('bias_terms_hidden:\n', bias_terms_hidden.numpy())

print('bias_terms_output:\n', bias_terms_output.numpy())

-0.56

X, =

0.2669241 0.06167726]

implies

x2=?
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Important Desigh Questions for MLP

© torch.manual_seed(1) # for reproducibility
# Q1: how many hidden layers should be there? (depth)
# answer: there is only 1 hidden layer
num_of_hidden_layer = 1

# Q2: how many neurons should be in each layer? (width)

# answer: there are 2 neurons in the input layer

# there are 3 neurons in the hidden layer

# there are 1 neurons in the output layer

num_of_neurons_input_layer = 2

#num_of_neurons_input_layer = input_feature_size # also can be assigned from 'input_feature_size' (which we computed in the previous cell
num_of_neurons_hidden_layer = 3

num_of_neurons_output_layer = 1

# Q3 how many dense connections should be there in between each adjacent layers

# answer: there should be 2x3 dense connnections (between input layer and hidden layer: dense_connections_W1)
# there should be 3x1 dense connnections (between hidden layer and output layer: dense_connections_W2)
dense_connections_W1 = torch.randn(num_of_neurons_input_layer, num_of_neurons_hidden_layer)
dense_connections_W2 = torch.randn(num_of_neurons_hidden_layer, num_of_neurons_output_layer)

[21] # Q4: what should the activation be at each of the intermediate layers?
# answer: let use sigmoid() activation function in the hidden layer
sigmoid_activation_hidden = nn.Sigmoid()

[22] # Q5: what should be activation of the final layer (let's assume we are using a binary classification task for which sigmoid ctivation is
sigmoid_activation_output = nn.Sigmoid()
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Forward Pass in our Multilayer Perceptron (MLP)

e Each neuron contains two operations:

e a dot product between a weight vector (edges in the graph) and an input vector, which
produces a number

e Then, that number through an activation function, which produces a number as an output

« We can collective do all these dot products in a single layer using a single matrix-matrix
multiplication torch.matmul() as follows.

e Also add the bias-term after computing the matrix multiplication

-0.56

x,=1.54099

Consider doing fi rd
Sample# o o
n 1.5409961 -0.2934289 [ >

x,=-0.2934

1 1
wix=[wo wi wo]| 154 | =[-056 0.66 0.62]| 1.54 | =(=0.56)+ 1.54%0.66 + (~0.293)*0.66 = 0.263 = 1T oxp 0263 exp—0203
-0.293 ~0.293
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https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.matmul.html

Forward Pass in our Multilayer Perceptron (MLP)

e Each neuron contains two operations:

e a dot product between a weight vector (edges in the graph) and an input vector, which
produces a number

e Then, that number through an activation function, which produces a number as an output

« We can collective do all these dot products in a single layer using a single matrix-matrix
multiplication torch.matmul() as follows.

e Also add the bias-term after computing the matrix multiplication

Consider doing fi rd
Sample# s o s i s \
X,=1.
1.5409961 -0.2934289 [ 1
1 D ~Jo.27

-0.45
x,=-0.2934 ~

output = ——m—
1+ exp‘WT"
1 1 _ 1
wix=[wo wi W]l [ 154 | =[-0.89 027 —045]| 1.54 | =(=0.89) + 1.54%0.27 + (=0.293) * (=0.45) =—0.34 1 +exp— (=034
—0.293 —-0.293
=0.415
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Forward Pass in our Multilayer Perceptron (MLP)

e Each neuron contains two operations:

e a dot product between a weight vector (edges in the graph) and an input vector, which
produces a number

e Then, that number through an activation function, which produces a number as an output

« We can collective do all these dot products in a single layer using a single matrix-matrix
multiplication torch.matmul() as follows.

e Also add the bias-term after computing the matrix multiplication

/

Consider doing fi rd
Sample# AR - N
n 1.5409961 -0.2934289 | > x,;=1.54099

x,=-0.2934 |—

1 1 R
wix=[wo Wi wy] [ 1.54 ] =[-0.058 0.06 —0.17] [ 1.54 ] = (=0.058) + 1.54 0.06 + (—0.293) * (=0.17) = 0.084 1 + exp=0-084

—-0.293 —-0.293
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Forward Pass in our Multilayer Perceptron (MLP)

e Each neuron contains two operations:

e a dot product between a weight vector (edges in the graph) and an input vector, which
produces a number

e Then, that number through an activation function, which produces a number as an output

« We can collective do all these dot products in a single layer using a single matrix-matrix
multiplication torch.matmul() as follows.

e Also add the bias-term after computing the matrix multiplication

() matrix_mult_X_and_W1l = torch.matmul(random_X[®,:], dense_connections_W1l) + bias_terms_hidden
print('hidden layer input vector and weight vector dot products: \n', matrix_mult_X_and_W1.numpy())
output_hidden_layer = sigmoid_activation_hidden(matrix_mult_X_and_W1)
print('output of hidden layer: \n', output_hidden_layer.numpy())

hidden layer input vector and weight vector dot products:
[ ©.27377588 -0.3483593 0.08554165]

output of hidden layer:
[0.5680196 ©.41378036 0.5213724 ]
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Forward Pass in our Multilayer Perceptron (MLP)

e Each neuron contains two operations:

e a dot product between a weight vector (edges in the graph) and an input vector, which
produces a number

e Then, that number through an activation function, which produces a number as an output

« We can collective do all these dot products in a single layer using a single matrix-matrix
multiplication torch.matmul() as follows.

e Also add the bias-term after computing the matrix multiplication

Sample# Consider dong onvard % 05653
n 1.5409961 -0.2934289 [ J> -
. G -0.20

) ~1.52
0415
0.38
. / -1.03
y 0.520
1
output = — 1.
I+exp=W'x
—0.20 -0.20 B 1
wix = [wo Wi wy wy) 065461553 —[1-152 038 —1.03] %5461553 = 1%(=0.20) + (—1.52) *0.5653 + 0.38 * 0.415 + (= 1.03) * (0.520) 1 + exp—(-1437156)
0520 0520 = 0.191
= — 1.437156
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Forward Pass in our Multilayer Perceptron (MLP)

0 matrix_mult_hidden_and_W2 = torch.matmul(output_hidden_layer, dense_connections_W2) + bias_terms_output
print('output of output layer: \n', matrix_mult_hidden_and_w2)
final_output = sigmoid_activation_output(matrix_mult_hidden_and_Ww2)
print(‘'output of hidden layer: \n', final_output.numpy())

output of output layer:
tensor([-1.4383])

output of hidden layer:
[0.1918079]

0.5653

L N\ \ ~0.20
-1.52
I 0.415
; —0.38
\
5 -1.03
4 ‘ 0.520
1
output = — 1.
I+exp=W'x
—0.20 -0.20 B 1
wlix =[wo wi wy ws] 065461553 =[1-152 038 —1.03] %5461553 = 1%(=0.20) + (=1.52) *0.5653 + 0.38 * 0.415 + (= 1.03) * (0.520) 1 + exp—(-1437156)
0.520 0520 = 0.191
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Next lecture: Modular Code Multilayer Perceptron
using MLP

« A multilayer perceptron is the simplest type of neural network. It
consists of perceptrons (aka nodes, neurons) arranged in layers

Input layer 1st Hidden layer 2nd Hidden layer Output layer

X \ ‘\ \
v & Q \/ Q(/ )
= Dol \\5'6‘90"‘*0
IR 77,
image PyTorch ‘1//"\\\‘ 1/"\\\‘ Y Yo
sgx2g Flatten() 7 P '["v
BTN
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