CS167: Machine Learning

PyTorch Basics
A Simple Implementation of Multilayer Perceptron (MLP)
with PyTorch

Monday, November 11th, 2024

Recap: Last Class

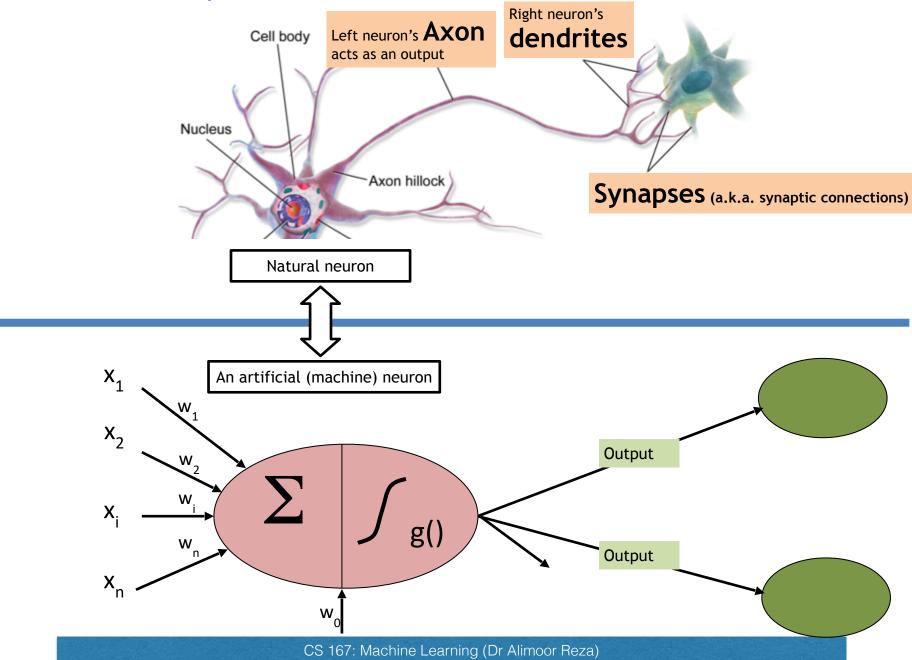
• Connections with biology: natural neurons vs. artificial neurons

Multilayer Perceptrons (MLP)

MLP Structure

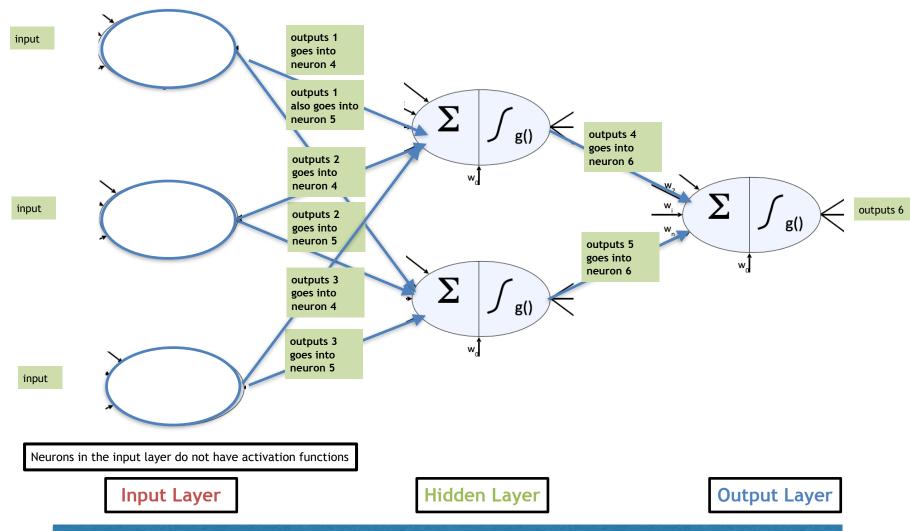
- Learning MLP Weight Parameters
 - Recap from last week's offline lecture
 - Trainable parameters and their learnable weights

Recap: Natural neurons vs. artificial neurons



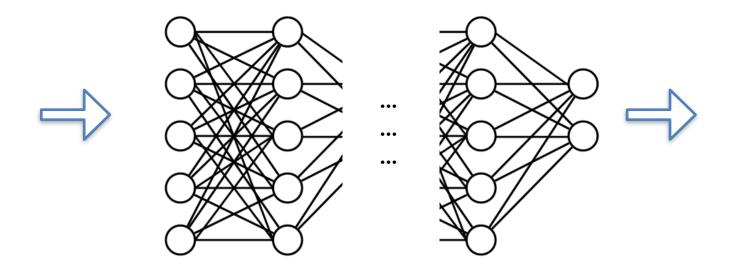
Recap: 1-Hidden Layer Neural Network

- We created our first multilayer perceptron (MLP)
- Any layers in between input layer and output layer are called hidden layers
- Hence this MLP can also be called 1-hidden layer neural network



Recap: MLP (Network) Structure

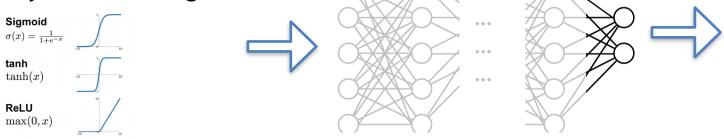
- Each of these questions need to be answered before you set up your neural network:
 - how many hidden layers should I have? (depth)
 - how many neurons should be in each layer? (width)
 - what should your activation be at each of the layers?



Recap: Final Output Nodes

• In general, the complexity of your network should match the complexity of your problem. The final output nodes should be related to what kind of

problem you are solving



Activation Function	Function	Lower bound	Upper bound	Type of Machine Learning
Linear	f(z) = az	-∞	00	regression where results can be negative
Rectified Linear Unit (ReLU)	relu(z) = max $(0, z)$	0	∞	regression where results can't be negative
Sigmoid	$sigmoid$ (z) $= \frac{1}{1+e^{-z}}$	0	1	binary classification
Softmax	$softmax (z_i) = \frac{exp(z_i)}{\sum_j exp(z_j)}$	0	1	multiclass classification

Recap: Training to Learn MLP (Network) Structure Parameters

- The specific name for the weight learning algorithm is Backpropagation. It is glorified name but it is gradient descent under the hood.
- It tunes **the weights** over a neural network using **gradient descent** to iteratively reduce the error in the network.

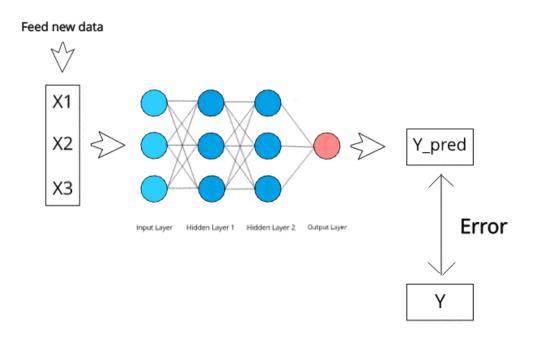


Image reference

Recap: Last Class

• Connections with biology: natural neurons vs. artificial neurons

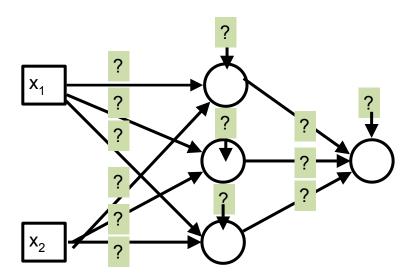
Multilayer Perceptrons (MLP)

MLP Structure

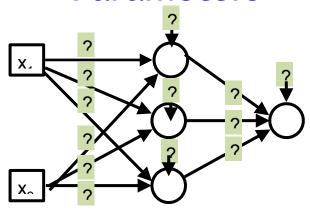
- Learning MLP Weight Parameters
 - Recap from previous week's offline lecture
 - Trainable parameters and their learnable weights

Training to Learn MLP (Network) Structure Parameters

• The trainable parameters are the weights (w's) which are learned from the training data



Training to Learn MLP (Network) Structure Parameters



- The goal is to **minimize the error** predicted by the network (from last lecture) from the training data
 - Gradient Descent
 - Stochastic Gradient descent
- Gradient Descent
 - calculate the gradient vector based on that batch $\nabla E(\mathbf{w})$
 - adjust (or update) the values of the weights based on the gradient vector to that batch

$$\mathbf{w}^{\text{new}} = \mathbf{w}^{\text{old}} - \eta \, \nabla \mathbf{E}(\mathbf{w})$$

Training to Learn MLP (Network) Structure Parameters

- The specific name for the weight learning algorithm is Backpropagation. It is glorified name but it is gradient descent under the hood.
- It tunes **the weights** over a neural network using **gradient descent** to iteratively reduce the error in the network.

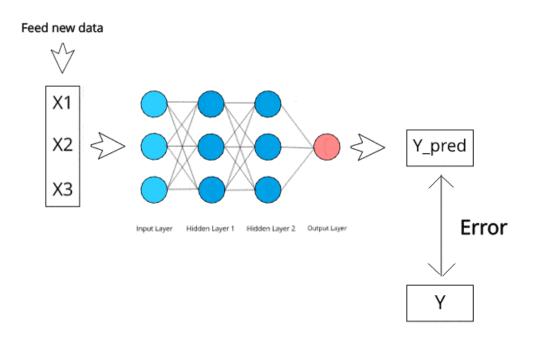
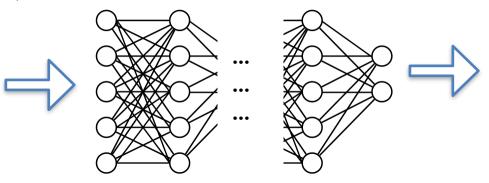


Image reference

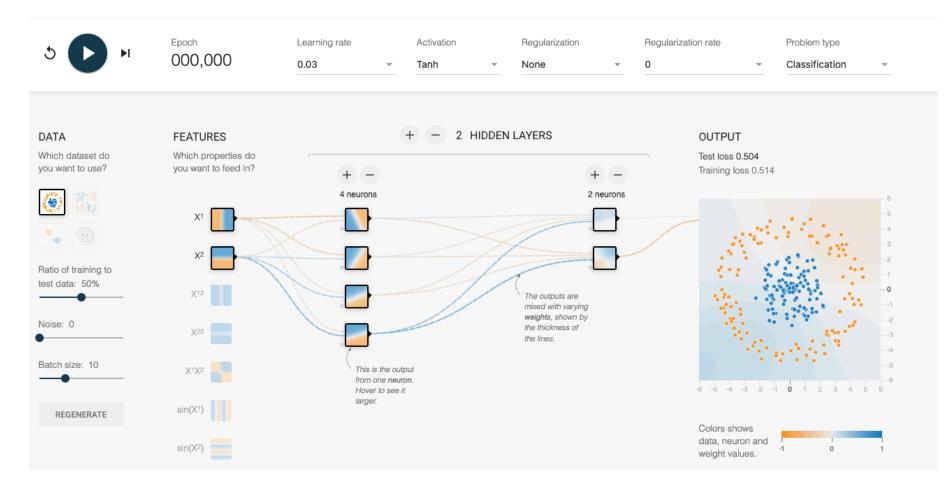
MLP Summary

- MLPs are effective in finding non-linear patterns in the training data
 - can be applied to regression or classification.
 - backpropagation tunes the weights over a neural network using gradient descent to iteratively reduce the error in the network
 - overfitting the training data is common and is important to avoid
 - the following parameters should be tuned when using MLPs:
 - number of epochs
 - structure of the network (depth, width)
 - activation function
 - eta (learning rate)



Tinker with the Following to See MLP in Action

MLPs are effective in finding non-linear patterns in the training data



https://playground.tensorflow.org

Today's Agenda

• PyTorch Basics

• Simple Multilayer Perceptrons (MLP) Implementation using PyTorch

PyTorch

- PyTorch is machine learning framework based on Torch library. It has a Python interface.
- This is a very popular framework for building and deploying deep learning application including MLP, and other future models we will learn about in this course
- Colab and Kaggle both has PyTorch support hence we can readily run our PyTorch code without worrying about the installation. But optionally, if you have GPU in your workstation (laptop/desktop), you can install a fresh copy of PyTorch there.

https://pytorch.org/

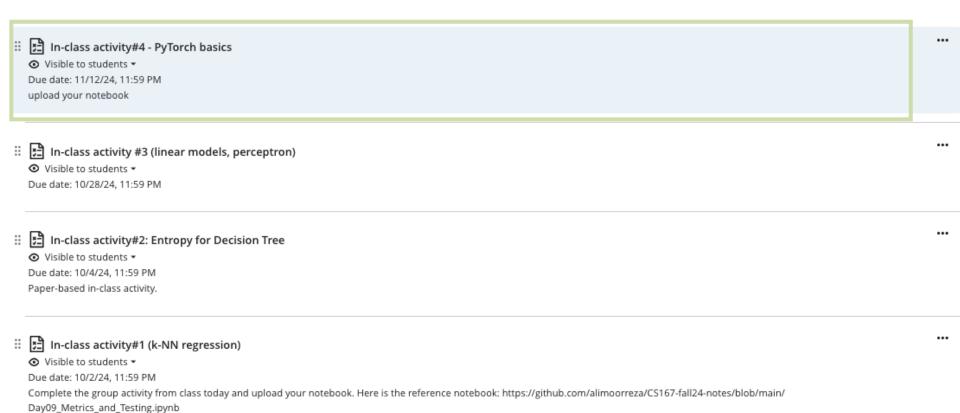
PyTorch

• Go to Blackboard and work on the notebook titled "PyTorch Basics."

https://pytorch.org/

PyTorch

• Upload your notebook to Blackboard (under 'Assignment' section) once completed!



https://pytorch.org/

Today's Agenda

• PyTorch Basics

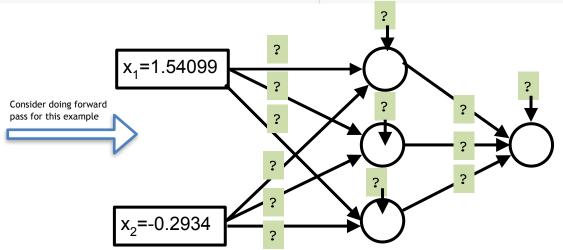
• Simple Multilayer Perceptrons (MLP) Implementation using PyTorch

Generate Random Samples for the MLP Below

• A multilayer perceptron is the simplest type of neural network. It consists of perceptrons (aka nodes, neurons) arranged in layers

```
# let's generate 4 random samples of (x1, x2) for the above network
torch.manual_seed(0)
random_X = torch.randn(4,2) # you could imagine that these are pairs of (x1, x2) as shown in the above table
print('random_X = \n', random_X.numpy())
input_feature_size = random_X.shape[1] # number of columns corresponds to feature dimension
print('\n\ninput feature dimension: ', input_feature_size)
```

Sample#	X 1	X 2
1	1.5409961	-0.2934289
2	-2.1787894	0.56843126
3	-1.0845224	-1.3985955
4	0.40334684	0.83802634



- Each of these questions need to be answered before you set up your multilayer perceptron
 - Q1: how many hidden layers should be there? (depth)
 - Q2: how many neurons should be in each layer? (width)
 - Q3: how many dense connections should be there in between each adjacent layers
 - Q4: what should the activation be at each of the intermediate layers?
 - sigmoid(), tanh(), rectified-linear-unit(), etc
 - Q5: what should be activation of the final layer
 - depends the task classification (sigmoid(), softmax()) vs. regression

```
torch.manual_seed(1) # for reproducibility
    # Q1: how many hidden layers should be there? (depth)
    # answer: there is only 1 hidden layer
    num of hidden layer = 1
    # Q2: how many neurons should be in each layer? (width)
    # answer: there are 2 neurons in the input layer
              there are 3 neurons in the hidden layer
              there are 1 neurons in the output layer
    num_of_neurons_input_layer = 2
    #num_of_neurons_input_layer = input_feature_size # also can be assigned from 'input_feature_size' (which we computed in the previous cell
    num_of_neurons_hidden_layer = 3
    num_of_neurons_output_layer = 1
    # Q3 how many dense connections should be there in between each adjacent layers
    # answer: there should be 2x3 dense connections (between input layer and hidden layer: dense connections W1)
              there should be 3x1 dense connections (between hidden layer and output layer: dense_connections_W2)
    dense_connections_W1 = torch.randn(num_of_neurons_input_layer, num_of_neurons_hidden_layer)
    dense connections W2 = torch.randn(num_of_neurons_hidden_layer, num_of_neurons_output_layer)
    print('Random initialized weights between input layer and hidden layer: dense_connections_W1=\n', dense_connections_W1.numpy())
    print('Random initialized weights between input layer and hidden layer; dense connections W2=\n', dense connections W2=\n', dense connections W2.numpy())
    # add the bias terms for all the layers except input layer
    bias terms hidden = torch.randn(num of neurons hidden layer)
    bias_terms_output
                         = torch.randn(num_of_neurons_output_layer)
    print('bias_terms_hidden:\n', bias_terms_hidden.numpy())
    print('bias terms output:\n', bias terms output.numpy())
```

```
Random initialized weights between input [ 0.66135216  0.2669241  0.06167726] [ 0.6213173  -0.45190597  -0.16613023]]
Random initialized weights between input [ [-1.5227685 ] [ 0.38168392] [ -1.0276086 ]] bias_terms_hidden: [ -0.5630528  -0.89229053  -0.05825018] bias_terms_output: [ -0.19550958]
```

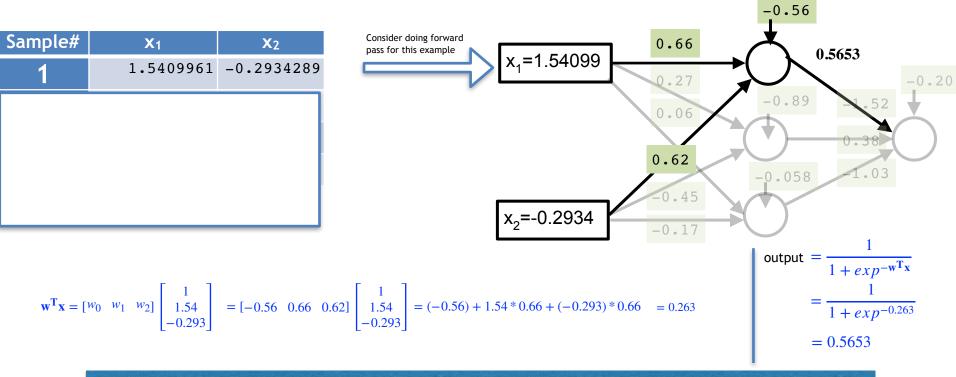
```
torch.manual_seed(1) # for reproducibility
                 # Q1: how many hidden layers should be there? (depth)
                 # answer: there is only 1 hidden layer
                 num of hidden layer = 1
                 # Q2: how many neurons should be in each layer? (width)
                 # answer: there are 2 neurons in the input layer
                          there are 3 neurons in the hidden layer
                          there are 1 neurons in the output layer
                 num of neurons input layer = 2
                 #num_of_neurons_input_layer = input_feature_size # also can be assigned from 'input_feature_size' (which we computed in the previous cell
                 num of neurons hidden layer = 3
                 num of neurons output layer = 1
                 # Q3 how many dense connections should be there in between each adjacent layers
                 # answer: there should be 2x3 dense connections (between input layer and hidden layer: dense connections W1)
                          there should be 3x1 dense connections (between hidden layer and output layer: dense_connections_W2)
                 dense_connections_W1 = torch.randn(num_of_neurons_input_layer, num_of_neurons_hidden_layer)
                 dense connections W2 = torch.randn(num of neurons hidden layer, num of neurons output layer)
                 print('Random initialized weights between input layer and hidden layer: dense_connections_W1=\n', dense_connections_W1.numpy())
                 print('Random initialized weights between input layer and hidden layer; dense connections W2=\n', dense connections W2.numpy())
                 # add the bias terms for all the layers except input layer
                 bias_terms_hidden = torch.randn(num_of_neurons_hidden_layer)
                 bias terms output = torch.randn(num of neurons output layer)
                 print('bias_terms_hidden:\n', bias_terms_hidden.numpy())
                 print('bias_terms_output:\n', bias_terms_output.numpy())
                                                                                                                                         -0.56
                                                                                                                     0.66
                                                                                                                     0.27
                                                                                                                                                                    -0.20
Random initialized weights between input layer and hidden layer: dense_connections_W1=
[[ 0.66135216  0.2669241  0.06167726]
                                                                                                                                         -0.89
                                                                                                                                                        -1.52
 [ 0.6213173 -0.45190597 -0.16613023]]
                                                                                                                     0.06
Random initialized weights between input layer and hidden layer: dense connections W2=
 [[-1.5227685]
                                                                                       implies
 [ 0.38168392]
 [-1.0276086 ]]
                                                                                                                    0.62
bias_terms_hidden:
                                                                                                                                       -0.058
                                                                                                                                                        -1.03
[-0.5630528 -0.89229053 -0.05825018]
bias_terms_output:
 [-0.19550958]
                                                                                                   x_2 = ?
```

```
torch.manual_seed(1) # for reproducibility
    # Q1: how many hidden layers should be there? (depth)
    # answer: there is only 1 hidden layer
    num_of_hidden_layer = 1
    # Q2: how many neurons should be in each layer? (width)
    # answer: there are 2 neurons in the input laver
              there are 3 neurons in the hidden layer
              there are 1 neurons in the output layer
    num_of_neurons_input_layer = 2
    #num_of_neurons_input_layer = input_feature_size # also can be assigned from 'input_feature_size' (which we computed in the previous cell
    num_of_neurons_hidden_layer = 3
    num_of_neurons_output_layer = 1
    # Q3 how many dense connections should be there in between each adjacent layers
    # answer: there should be 2x3 dense connections (between input layer and hidden layer: dense_connections_W1)
              there should be 3x1 dense connections (between hidden layer and output layer: dense_connections_W2)
    dense_connections_W1 = torch.randn(num_of_neurons_input_layer, num_of_neurons_hidden_layer)
    dense_connections_W2 = torch.randn(num_of_neurons_hidden_layer, num_of_neurons_output_layer)
```

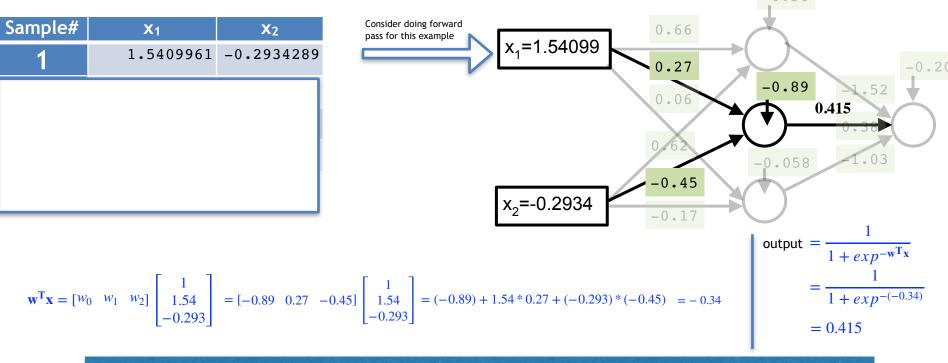
```
[21] # Q4: what should the activation be at each of the intermediate layers?
    # answer: let use sigmoid() activation function in the hidden layer
    sigmoid_activation_hidden = nn.Sigmoid()
```

[22] # Q5: what should be activation of the final layer (let's assume we are using a binary classification task for which sigmoid ctivation is sigmoid_activation_output = nn.Sigmoid()

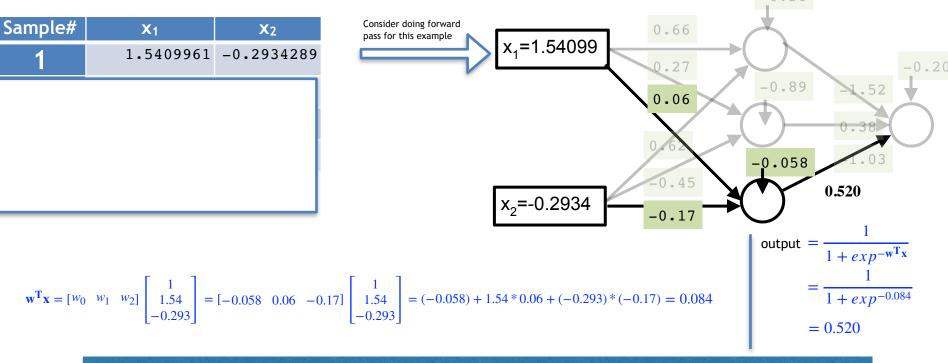
- Each neuron contains two operations:
 - a dot product between <u>a weight vector (edges in the graph)</u> and <u>an input vector</u>, which produces a number
 - Then, that number through an activation function, which produces a number as an output
- We can collective do all these dot products in a single layer using a single matrix-matrix multiplication <u>torch.matmul()</u> as follows.
- Also add the bias-term after computing the matrix multiplication



- Each neuron contains two operations:
 - a dot product between <u>a weight vector (edges in the graph)</u> and <u>an input vector</u>, which produces a number
 - Then, that number through an activation function, which produces a number as an output
- We can collective do all these dot products in a single layer using a single matrix-matrix multiplication <u>torch.matmul()</u> as follows.
- Also add the bias-term after computing the matrix multiplication



- Each neuron contains two operations:
 - a dot product between <u>a weight vector (edges in the graph)</u> and <u>an input vector</u>, which produces a number
 - Then, that number through an activation function, which produces a number as an output
- We can collective do all these dot products in a single layer using a single matrix-matrix multiplication <u>torch.matmul()</u> as follows.
- Also add the bias-term after computing the matrix multiplication

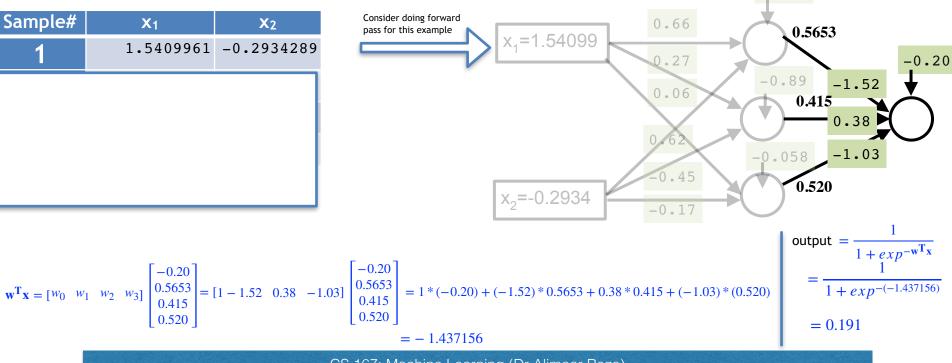


- Each neuron contains two operations:
 - a dot product between <u>a weight vector (edges in the graph)</u> and <u>an input vector</u>, which produces a number
 - Then, that number through an activation function, which produces a number as an output
- We can collective do all these dot products in a single layer using a single matrix-matrix multiplication <u>torch.matmul()</u> as follows.
- Also add the bias-term after computing the matrix multiplication

- Each neuron contains two operations:
 - a dot product between <u>a weight vector (edges in the graph)</u> and <u>an input vector</u>, which produces a number
 - Then, that number through an activation function, which produces a number as an output

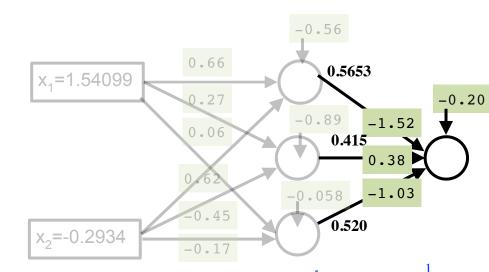
-0.56

- We can collective do all these dot products in a single layer using a single matrix-matrix multiplication <u>torch.matmul()</u> as follows.
- Also add the bias-term after computing the matrix multiplication



matrix_mult_hidden_and_W2 = torch.matmul(output_hidden_layer, dense_connections_W2) + bias_terms_output
print('output of output layer: \n', matrix_mult_hidden_and_W2)
final_output = sigmoid_activation_output(matrix_mult_hidden_and_W2)
print('output of hidden layer: \n', final_output.numpy())

output of output layer:
 tensor([-1.4383])
output of hidden layer:
 [0.1918079]



$$\mathbf{w^{T}_{X}} = \begin{bmatrix} w_{0} & w_{1} & w_{2} & w_{3} \end{bmatrix} \begin{bmatrix} -0.20 \\ 0.5653 \\ 0.415 \\ 0.520 \end{bmatrix} = \begin{bmatrix} 1 - 1.52 & 0.38 & -1.03 \end{bmatrix} \begin{bmatrix} -0.20 \\ 0.5653 \\ 0.415 \\ 0.520 \end{bmatrix} = 1 * (-0.20) + (-1.52) * 0.5653 + 0.38 * 0.415 + (-1.03) * (0.520) \end{bmatrix} = 1 * (-0.20) + (-1.52) * 0.5653 + 0.38 * 0.415 + (-1.03) * (0.520) \end{bmatrix} = 0.191$$

Next lecture: Modular Code Multilayer Perceptron using MLP

• A multilayer perceptron is the simplest type of neural network. It consists of perceptrons (aka nodes, neurons) arranged in layers

