CS167: Machine Learning

Perceptron (group activity) Discriminative vs. Generative Models Generalizing Weight Learning Algorithm

Monday, October 28th, 2024

Announcements

- Project #1
 - released on October 21st
 - due by November 04

- <u>Quiz # 2</u>
 - released today October 28th (Monday)
 - Topics: Weighted kNN, z-score normalization, PCA, linear classifier, perceptron learning algorithm, entropy calculation, information gain
 - due on November 6th (Wednesday)

Today's Agenda

• Perceptron Learning Algorithm Group Activity

w_0^{old} = 0.0	Your Tur	rn: Iter	atior	n 3: Bac	kward Step
	Body Wave Mag	Surface Wave Mag	Classification	Target (-1=earthquake, +1=explosion)	
		^			η = 0.1
w_1^{old} = 0.14	6.1	5.8	Earthquake	-1	
		$\Delta w_i = i$	$\gamma(t-o)x_i$		
w_2^{old} = -0.3		$W_{:}^{new} =$	$W_i^{old} + \Delta$	W:	
		l	l	l	
	η target: Ne	euron's x_0	$\Delta w_0 =$	$=\eta(t-o)x_0$	$w_{2}^{new} = w_{2}^{old} + \Delta w_{0}$

	η	t	output: o	<i>x</i> ₀	$\Delta w_0 = \eta (t - o) x_0$	$w_o^{new} = w_o^{old} + \Delta w_0$
computation for weight parameter W0	0.1	-1	?	1	?	?
computation	η	target: t	Neuron's output: <i>o</i>	<i>x</i> ₁	$\Delta w_1 = \eta (t - o) x_1$	$w_1^{new} = w_1^{old} + \Delta w_1$
for weight parameter W1	0.1	-1	?	6.1	?	?
computation	η	target: <i>t</i>	Neuron's output: <i>o</i>	<i>x</i> ₂	$\Delta w_2 = \eta (t - o) x_2$	$w_2^{new} = w_2^{old} + \Delta w_2$
for weight parameter W2	0.1	-1	?	5.8	?	?

CS 167: Machine Learning (Dr Alimoor Reza)

Your Turn: Results After Iteration 3

Today's Agenda

- Perceptron Learning Algorithm Group Activity
- Generative Model vs Discriminative Model

Discriminative Model for Classification

- Discriminative Model: Alternatively, we can build the decision functions (eg, line/plane/hyperplane) from the training samples using the *difference* between two classes
 - For example, if we have two classes as shown below, we model one 2D line for class-1 examples and another 2D line for class-2 examples

Generative Model for Classification

- Generative Model: We can build the decision functions (eg, line/plane/ hyperplane) from the training samples using individual classes
 - For example, if we have two classes as shown below, we model one 2D line for class-1 examples and another 2D line for class-2 examples

Generative vs. Discriminative Model

Example: Generative vs. Discriminative

• Is decision tree (DT) a generative model or a discriminative model?

Example: Generative vs. Discriminative

• Is **Perceptron** a generative model or a discriminative model?

Today's Agenda

- Perceptron Learning Algorithm Group Activity
- Generative Model vs Discriminative Model
- Perceptron's limitation

Perceptron

- The mathematical model of a *single neuron* is called a **perceptron**
- It has a two components:
 - <u>Component 1:</u> a linear model of the form we just saw in the previous slide $W_0 + W_1 * X_1 + \dots + W_n * X_n$
 - Component 2: a step function which will produce 1 if the function value is positive and -1 otherwise
 X₁
 W₁
 W₂

$$x_{i} \xrightarrow{w_{i}} \sum_{v_{o}} \sum_{v_{o}} \sum_{v_{o}} y = f(x, w) = 0(\sum_{i=1,...,n} w_{i})$$

Perceptron can Model AND Function

• Can a perceptron model AND function?

Perceptron can Model OR Function

• Let's consider the OR function.

• Can a perceptron model OR function?

Can Perceptrons model any function?

- Perceptron can also model other boolean functions such as $(x_1 \land x_2 \land \neg x_3)$. We can tabulate all combinations of the three variables and their corresponding outputs; then find weight parameters (of the plane separating it two classes (1 and 0)) using perceptron update rule we just did
- But can a perceptron model any function?

Perceptron

"the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence." Frank Rosenblatt, 1958

Now Let's Consider XOR Function

• Can a perceptron model XOR function?

Perceptron

Marvin Minsky and Seymour Papert showed that they couldn't even learn XOR in 1969, which is why all the hype about the perceptron faded away

Today's Agenda

- Perceptron Learning Algorithm Group Activity
- Generative Model vs Discriminative Model
- Perceptron's limitation
- Neuron Model with Activation Function

Modification of Perceptron

$$y = f(\mathbf{x}, \mathbf{w}) = o(\Sigma_{i=1,...,n} w_i x_i)$$

Make a Neuron with a Differentiable Function

Common Activation Functions

Each activation function is smooth and differentiable

CS 167: Machine Learning (Dr Alimoor Reza)

Sigmoid (a.k.a. Logistic Function) Activation

Differentiation of sigmoid:

Today's Agenda

- Perceptron Learning Algorithm Group Activity
- Generative Model vs Discriminative Model
- Perceptron's limitation
- Neuron Model with Activation Function
- Mathematical Modeling of Weight Parameters Learning

• Instead of our simple <u>Perceptron Update Rule</u>, we can now use a better learning algorithm to learn the weight parameters $(w_0, w_1, w_2, ..., w_n)$

• But what is this new **weight parameter learning algorithm**?

Earthquake dataset training features

Seismometer Data			
Predictor ₁	Predictor ₂		
Body Wave Magnitude	Surface Wave Magnitude		
5.2	3.4		
5.8	3.5		
5.9	4.4		
6.1	4.1		
5.2	5		
4.5	4.9		
5.3	4.2		
5.5	5.5		
6.1	5.8		

training labels

	í
	Target
Classification	
underground explosion	target: +1
earthquake	target: -1

yⁱ is a scalar value denoting label of each training example

• Treat the problem as one of *minimization error* between a single training example's label and the network's output, given the example and weights as input

$$\mathbf{x}^{\mathbf{i}} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \qquad \mathbf{x}^{\mathbf{i}} = \begin{bmatrix} 1.0 \\ 5.2 \\ 3.4 \end{bmatrix} \qquad \mathbf{x}^{\mathbf{i}} = \begin{bmatrix} 1.0 \\ 5.2 \\ 3.5 \end{bmatrix} \qquad \mathbf{x}^{\mathbf{i}} = \begin{bmatrix} 1.0 \\ 2 \\ 3.5 \end{bmatrix}$$

Earthquake dataset training split

Seismometer Data			
Predictor ₁	Predictor ₂		
Body Wave Magnitude	Surface Wave Magnitude		
5.2	3.4		
5.8	3.5		
5.9	4.4		
6.1	4.1		
5.2	5		
4.5	4.9		
5.3	4.2		
5.5	5.5		
6.1	5.8		

• Treat the problem as one of *minimization error* between a single training example's label and the network's output, given the example and weights as input

$$\mathbf{x}^{\mathbf{i}} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \qquad \mathbf{x}^{\mathbf{i}} = \begin{bmatrix} 1.0 \\ 5.2 \\ 3.4 \end{bmatrix} \qquad \mathbf{x}^{\mathbf{i}} = \begin{bmatrix} 1.0 \\ 5.2 \\ 3.5 \end{bmatrix} \qquad \mathbf{x}^{\mathbf{i}} = \begin{bmatrix} 1.0 \\ 5.9 \\ 5.4 \end{bmatrix}$$

Earthquake dataset training split

Seismometer Data			
Predictor ₁	Predictor ₂		
Body Wave Magnitude	Surface Wave Magnitude		
5.2	3.4		
5.8	3.5		
5.9	4.4		
6.1	4.1		
5.2	5		
4.5	4.9		
5.3	4.2		
5.5	5.5		
6.1	5.8		

$$\mathbf{x}^{\mathbf{i}} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \xrightarrow{\mathbf{x}^{\mathbf{i}}} \mathbf{x}^{\mathbf{i}} = \begin{bmatrix} 1.0 \\ 5.2 \\ 3.4 \end{bmatrix} \qquad \mathbf{x}^{\mathbf{i}} = \begin{bmatrix} 1.0 \\ 5.2 \\ 3.5 \end{bmatrix} \qquad \mathbf{x}^{\mathbf{i}} = \begin{bmatrix} 1.0 \\ 5.9 \\ 5.4 \end{bmatrix}$$

training labels		
	Target	
Classification		
underground explosion	target: +1	
underground explosion	target: +1	
underground explosion	target: +1	
underground explosion	<pre>target: +1</pre>	
earthquake	target: -1	

$$\mathbf{x}^{\mathbf{i}} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \xrightarrow{\mathbf{x}^{\mathbf{i}}} \mathbf{x}^{\mathbf{i}} = \begin{bmatrix} 1.0 \\ 5.2 \\ 3.4 \end{bmatrix} \qquad \mathbf{x}^{\mathbf{i}} = \begin{bmatrix} 1.0 \\ 5.2 \\ 3.5 \end{bmatrix} \qquad \mathbf{x}^{\mathbf{i}} = \begin{bmatrix} 1.0 \\ 5.9 \\ 5.4 \end{bmatrix}$$

training labels		
	Target	
Classification		
underground explosion	target: +1	
earthquake	target: -1	

• Treat the problem as one of *minimization error* between a single training example's label and the network's output, given the example and weights as input

CS 167: Machine Learning (Dr Alimoor Reza)

• Treat the problem as one of *minimization error* between a single training example's label and the network's output, given the example and weights as input

CS 167: Machine Learning (Dr Alimoor Reza)

 $Error(\mathbf{x}^{\mathbf{i}}, y^{i}, \mathbf{w}) = (y^{i} - f(\mathbf{x}^{\mathbf{i}}, \mathbf{w}))^{2}$

 Treat the problem as one of *minimization error* between a single training example's label and the network's output, given the example and weights as input

$$Error(\mathbf{x}^{\mathbf{i}}, y^{i}, \mathbf{w}) = (y^{i} - f(\mathbf{x}^{\mathbf{i}}, \mathbf{w}))^{2}$$

• If we consider a collection of training examples and sum the above error over all examples

$$E(\mathbf{w}) = \sum_{i} Error(\mathbf{x}^{i}, y^{i}, \mathbf{w}) = \sum_{i} (y^{i} - f(\mathbf{x}^{i}, \mathbf{w}))^{2}$$

 If we consider a collection of training examples and Sum the above error term over all examples

$$E(\mathbf{w}) = \sum_{i} Error(\mathbf{x}_{i}, y_{i}, \mathbf{w}) = \sum_{i} (y_{i} - f(\mathbf{x}_{i}, \mathbf{w}))^{2}$$

- Minimize errors using an optimization algorithm:
 - Gradient Descent (GD)
 - Stochastic Gradient Descent (SGD)

E(w) term is also known as *loss function*

Today's Agenda

- Perceptron Learning Algorithm Group Activity
- Generative Model vs Discriminative Model
- Perceptron's limitation
- Neuron Model with Activation Function
- Mathematical Modeling of Weight Parameters Learning
- Intuitive Understanding of Optimization (minimization/maximization)

Optimization

• Mathematical **optimization** is the process of selecting the **"best element"** with regard to some criterion from some set of available alternatives

- Optimization problems come in two flavors:
 - **minimization:** trying to find the subset of values for attributes that gives you the minimum value in the <u>objective function</u>
 - maximization: trying to find the subset of values for attributes that gives you the maximum value in the <u>objective function</u>

Optimization

• **minimization**: trying to find the subset of values for attributes that gives you the minimum value in the <u>objective function</u>

- The term <u>objective function</u> is generalized term which leaves room for the function to be something that we want to either **minimize** or **maximize**. The other terms used for the minimizing setting are as follows:
 - loss function
 - error function
 - cost function

• **minimization:** trying to find the subset of values for attributes that gives you the minimum value in the objective function

A smooth 2D curve (each point correspond to a loss value)

CS 167: Machine Learning (Dr Alimoor Reza)

• **minimization:** trying to find the subset of values for attributes that gives you the minimum value in the objective function

A smooth 3D surface (each point correspond to a loss value)

• maximizations: trying to find the subset of values for attributes that gives you the maximum value in the objective function

A smooth 3D surface (each point correspond to a value of the objective function)

- **minimization:** trying to find the subset of values for attributes that gives you the minimum value in the objective function
- How to reach to the minimum?
 - we can start at an arbitrary point on the surface and gradually explore the surface until we reach the minimum value

A smooth 3D surface (each point correspond to a loss value)

CS 167: Machine Learning (Dr Alimoor Reza)