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Abstract— Large multimodal models (LMMs) are increasingly
integrated into autonomous driving systems for user interaction.
However, their limitations in fine-grained spatial reasoning
pose challenges for system interpretability and user trust. We
introduce Logic-RAG, a novel Retrieval-Augmented Generation
(RAG) framework that improves LMMs’ spatial understanding
in driving scenarios. Logic-RAG constructs a dynamic knowledge
base (KB) about object-object relationships in first-order logic
(FOL) using a perception module, a query-to-logic embedder,
and a logical inference engine. We evaluated Logic-RAG on
visual-spatial queries using both synthetic and real-world driving
videos. When using popular LMMs (GPT-4V, Claude 3.5) as
proxies for an autonomous driving system, these models achieved
only 55% accuracy on synthetic driving scenes and under 75%
on real-world driving scenes. Augmenting them with Logic-RAG
increased their accuracies to over 80% and 90%, respectively.
An ablation study showed that even without logical inference, the
fact-based context constructed by Logic-RAG alone improved
accuracy by 15%. Logic-RAG is extensible: it allows seamless
replacement of individual components with improved versions
and enables domain experts to compose new knowledge in
both FOL and natural language. In sum, Logic-RAG addresses
critical spatial reasoning deficiencies in LMMs for autonomous
driving applications. Code and data are available at: https:
//github.com/Imran2205/LogicRAG.

I. INTRODUCTION

End-to-end Al systems such as autonomous vehicles are
becoming mainstream, yet their black-box nature makes their
decisions difficult to interpret [1]. These systems typically
communicate through either visualization interfaces or natural
language interactions powered by large multimodal models
(LMMs) [2], [3], [4]. While visualizations show system
state, they offer limited user interaction. LMM interfaces, in
contrast, enable users to converse about and reason through
system decisions, potentially improving interpretability [5].

However, LMMs struggle with fine-grained visual-
spatial reasoning (VSR) — they fail to accurately rep-
resent relationships between objects (e.g., in front of,
behind) [6], [7], confuse nuanced action relationships
(e.g., distinguishing between vehicleO1 chased vehicle02 vs.
vehicle02 chased vehicleOl) [8], and exhibit weak logical
reasoning [9]. Moreover, LMMs can generate content that
they do not fully understand [10] and are prone to hallucina-
tion [11]. Fig.2 demonstrates these limitations, showing how
popular LMMs (GPT-4V [12] and Claude 3.5 [13]) struggle
with even simple VSR questions like “Does the white car
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Fig. 1. (a) Components of the Logic-RAG framework. It takes /N frames
and visual-spatial reasoning questions as inputs. The perception module
analyzes the frames to generate facts about properties and visual-spatial
relationships of objects in the scene and constructs a knowledge base (KB)
in the form of First-Order Logic (FOL). The Query-to-Logic embedder
parses the natural language question into an FOL query predicate, which is
then passed to the Inference Engine that performs the query resolution. (b)
The integration of Logic-RAG into a black box LMM, which receives the
inference output of our framework while generating the response.

at the center move at a constant speed?”. Such deficiencies
hinder the integration of LMM interfaces into autonomous
driving systems and undermine users’ trust.

Some of these limitations can be addressed by retrieval-
augmented generation (RAG) techniques [14], which provide
LMMs with relevant information retrieved from vector storage
as “context” to reduce factual errors in their responses.

Building on this concept, we present LOGIC-RAG, a
novel RAG framework that constructs a knowledge base
(KB) of facts about road scene objects and their rela-
tionships using first-order logic (FOL). It comprises four
key components (Fig. 1.a): 1) a Perception module, 2)
a Query-to-Logic Embedder, 3) the Knowledge Base (KB),
and 4) an Inference Engine that performs query resolution by
applying inference rules to derive new facts until a contradic-
tion is found or the desired query is proven. The facts retrieved
from the inference are fed into LMMs for augmentation
(Fig. 1.b), which enhances their spatial reasoning abilities in
dynamic scenes while generating responses. Like any expert
system, human experts provide a small set of declarative rules
and facts in FOL to bootstrap the framework [15].

We evaluated Logic-RAG on visual-spatial relationship
questions using both synthetic (Fig. 2) and real-world
(KITTI [16]) driving videos. We used popular commercial
LMMs as proxies for black-box autonomous driving systems.
On synthetic data, our results show that while these LMMs
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An illustration of the limitations of current commercial LMM models in visual-spatial reasoning (VSR). (Top) A sample of 4 consecutive frames

from a synthetic driving video where the VSR task will be performed. (Middle) The original prompts and four representative questions. The values of N
and M are 10 for GPT-4V and 5 for Claude-3.5, respectively, due to their current limits. (Bottom) Four responses from: 1) human oracle (accuracy: 100%),
2) Logic-RAG, 3) GPT-4V, and 4) Claude-3.5. The correct answers are colored green, and the incorrect answers are colored red. Note that Logic-RAG’s
accuracy is higher than black-box LMMs, and its response is generated by logical inference in our FOL system.

achieve an average accuracy of around 55% (baseline),
augmenting them with Logic-RAG increases accuracy by
more than 25%, exceeding 80%. An ablation study revealed
that augmenting LMMs with facts represented as template
sentences (without the logical inference module) still im-
proved accuracy by over 10% compared to the baseline
condition. On real-world data, Logic-RAG achieved 91%
accuracy, outperforming the baseline LMMs by 17%.
These findings strongly suggest that when LMMs learn
from joint embedding of image-text pairs [17], they may
have bypassed traditional computer vision pipelines (e.g.,
semantic segmentation, depth estimation, multi-object track-
ing), leading to deficiencies in spatial reasoning and object-
object relationship understanding [18]. By recovering this
missing information and augmenting LMMs with it, our
framework significantly improves their accuracy in visual-
spatial reasoning tasks.
In sum, we make the following contributions:

o Logic-RAG: We introduce the Logic-RAG framework,
which encodes detailed scene facts into a dynamic
knowledge base using First-Order Logic.

« Extensibility and Adaptability: Our framework allows
the incorporation of new domain knowledge from human
experts, using existing predicates to tailor the framework
to specific tasks and utility.

II. BACKGROUND AND RELATED WORK
A. Logical Reasoning using First-Order Logic

First-order logic (FOL) is an expressive formal system for
representing and reasoning about objects, their properties, and
relationships. FOL has been fundamental in Al for knowledge
representation and inference [19]. Neuro-symbolic approaches
like DeepProbLog [20] and Neural Theorem Provers [21]

combine deep learning with symbolic reasoning. LOGIC-
LM [9] demonstrated the integration of large language models
with symbolic solvers for enhanced logical reasoning.

a) Components of FOL: FOL consists of predicates,
functions, constants, variables, and quantifiers. Predicates
describe properties of objects or relationships between objects.
They take objects as arguments and produce a proposition
that is either true or false. Functions, like predicates, can take
any number of arguments but always return a single value
rather than a proposition. For instance, ColorOf{vehicle0l)
is a function that returns the color of the vehicle represented
by vehicleOl. Constants represent specific objects, while
variables are placeholders. Quantifiers, such as the universal
(V) and existential () quantifiers, enable reasoning about
multiple objects. For example, if Vehicle(vehicleOl) is a
specific segment of an object type vehicle in a scene and
Vehicle(x) is a base predicate indicating that variable z is a
vehicle, then vehicleO! is a constant in FOL.

b) FOL Statements and Operators: FOL statements are
constructed by combining predicates, logical connectives (e.g.,
conjunction A, disjunction V, negation —, equality =, and
implication —), and quantifiers. For example, the statement
Va,y : (DistanceDecreases(x, y)) — GettingCloser(zx, y)
indicates that for all objects x and y, if the distance between
objects x and y decreases in a set of consecutive video
frames, then x and y are getting closer. The equality (=)
operator determines whether two objects or object properties
are identical. For example, if vehicleOl and vehicle0O2 are
constants representing two black vehicles, the statement
ColorOfi{vehicle0l) = ColorOf{(vehicle02) is true.

B. Retrieval Augmented Generation (RAG)

Recent advances in RAG have reduced the hallucination
problem of LMMs by combining the strengths of language
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Fig. 3.  The predicates (in black) show a portion of KB that we construct
using the output of the perception module for frames in Fig.2. Text in orange
shows the queries that we make in the KB to learn the facts. For instance,
for the frames in Fig.2, ConstantSpeed(vehicle0l) is true.

models with information retrieval systems [14]. This allows
the model to generate content based on accurate and up-
to-date information [11]. RAG works as follows: y =
LLM(q, R(q)), where y is the output generated by the
LMM(.,.), q is the input (in this case, the question or query),
and R(q) is the relevant information retrieved from an external
KB. In Logic-RAG, we employ RAG using a formal method.
Our KB is composed of FOL facts, and R(q) is the result of
the resolution of the query q.

III. METHOD

We now describe the four key components of Logic-RAG
(Fig. 1): the Knowledge Base (KB), the Perception module,
the Query-to-Logic Embedder, and the Inference Engine.
Logic-RAG can be integrated with any LMM via LangChain
(www.langchain.com) interface, a popular RAG pipeline.

A. Knowledge Base (KB)

Our Knowledge Base (KB) is comprised of base predicates,
functions, and statements that represent object properties,
spatial relationships, and events in driving contexts (Table I).
The KB operates in a sliding window of N consecutive
video frames (N = 10), where facts are generated by
instantiating predicates with specific instances. For example,
substituting vehicleOI for x in Vehicle(x) produces the fact
Vehicle(vehicleO1). The KB updates dynamically as the sliding
window progresses, with our multistage perception module
(811I-B) continuously recognizing and incorporating new facts
(see rows 2"% and 37 in Table I). Fig. 3 shows some facts
generated for the frames in Fig. 2.

Importantly, our KB is extensible; it allows domain experts
to compose predicates through LogicPad, a text file written
in YAML format that our system dynamically loads and inter-
prets. The capabilities of the perception module are exposed in
LogicPad as atomic predicates and functions, similar to library
methods in traditional programming languages. Experts create
new compound predicates (e.g., Collide(x,y)) by combining
atomic predicates and functions in FOL (see the Derived rows
in Table I). Alternatively, they can create compound predicates
using natural language that our Query-to-Logic Embedder
(§$III-C) translates into FOL. As new capabilities are added in
the perception module—either by swapping internal models
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Fig. 4. Internal block diagram of our perception module. It takes video
frames as input and generates semantic, depth, and optical flow maps, which
are then utilized to track object instances and estimate relative distances.

or adding new ones—these capabilities automatically appear
as new atomic predicates (or functions) in LogicPad. All
predicates are available in the project repository.

B. Perception Module

Given an input driving video, we first generate dense pre-
diction tasks for each video frame, which include (i) semantic
segmentation, (ii) depth estimation, and (iii) optical flow pre-
diction (see Fig. 4). We then track each semantic object using
an object tracking model. Simultaneously, we compute the
relative distance between objects within two adjacent frames
inside the sliding window. These distances enable spatial
reasoning among objects in the scene, which we subsequently
use in our FOL predicates, such as GettingCloser(x, y), as
discussed in §II-A.

1) Dense Prediction Modules: Let us denote the input
video comprising M image frames. We also define a sliding
window of N consecutive frames, ie., I = I1,1s,...,Iy.
For each frame I;, we need to identify various foreground
and background objects as well as their semantic instances.
Furthermore, to describe inter-object relationships and the
motion dynamics of different objects over multiple frames,
we need to identify 3D spatial relationships between these
objects, particularly depth and motion flow. We describe these
steps in the following sections.

a) Semantic Segmentation: We start by densely predict-
ing semantic labels for every pixel in an image frame I;.
This involves pixel-wise labeling of foreground objects, such
as pedestrian and vehicle, as well as background objects,
including sidewalk, vegetation, and building. Let us assume
that there are L semantic categories {cy,ca,...,c} in an
image frame I;, and each category c; can have K instances,
represented as {531, 33'»2, ce s§ K, }- Bach semantic category
is an atomic predicate in our framework (e.g., Pedestrian(x),
Vehicle(x)). Instances of each category can then be encoded
as constants in FOL. For instance, we denote two instances
obtained in the current image frame I; as pedestrian0I and
vehicleO1. These instances serve as constants that are bound
to atomic predicates, in this case, Pedestrian(pedestrian01)
and Vehicle(vehicleO1). The complete list of atomic predicates
used in our experiments is shown in Table I. For semantic
segmentation, we employed HRNet-v2 [22] model, which has
demonstrated effective generalization across multiple datasets
trained from a composite one [23]. Furthermore, to determine
the color (e.g., ‘black’, ‘blue’, or *white’) and type (e.g., ‘car’,
‘bus’, or ‘SUV’) of vehicleOl, the values of the functions
ColorOf{vehicle01) and TypeOf{vehicleOl) are predicted using
a learned classifier.



b) Optical Flow: To approximate the scene motion
between two adjacent image frames in the video, we compute
the optical flow for each pixel. These computed optical
flows are then utilized to track important semantic instance
segments, enabling us to understand the movement of objects
within the scene. We employ the state-of-the-art pretrained
Rigid Mask model [24], which excels at estimating optical
flow and scene motion.

¢) Depth Estimation: Alongside semantic segmentation
and optical flow, we estimate dense depth from an input
image. Our depth estimation module provides per-pixel 3D
depth values, which are crucial for identifying 3D spatial
relationships between various semantic instance segments.
These relationships encompass both intra- and inter-segment
connections that evolve over time, as discussed in §I11-B.3.
To estimate the depth of various segments in each frame I;,
we employ the recent state-of-the-art depth estimation model
called PixelFormer [25], which has shown impressive results
in predicting depth information from a single image.

2) Object Tracking for Semantic Instances: We track
the movement trajectory of each instance s;k belonging
to all semantic categories across all image frames within
our specified window by framing it as a bipartite matching
problem. These trajectories are implicitly used to describe
single-object and multi-object interactions, which we will
describe in detail in §III-B.3. To construct the bipartite graph,
we treat each instance as a vertex, and edges are the dense
connections between the vertices of two frames. We assign
edge weights using two factors: an optical flow-based factor
derived from accumulated flow vectors of instance 5§k at
position s;J,gl [26], and a bounding box-based factor using
the intersection over union (IoU) of boxes encompassing two
vertices connected by an edge. We address the challenges from
under-segmentation and occlusion by inserting hypothetical
vertices as described in [27].

This process provides trajectories of individual instances
within the specific sliding window. Based on these trajectories,
we encode predicates, such as (Appears(x)) and (Disap-
pears(x)), to represent the appearance and disappearance of
instances. Consider an instance (vehicleOI) of the category
Vehicle(x). If (vehicleOl) is first detected in the current sliding
window, the predicate (Appears(vehicleOl)) becomes true
within that window, indicating that the instance has just
appeared. However, if (vehicleOI) was already present at the
beginning of the current sliding window, Appears(vehicle0Ol)
will be false (i.e., ~Appears(vehicleOl)), indicating that it
existed prior to the current window.

3) Inter-Object Relative Distance Estimator: Using in-
stance trajectories, we also determine the spatial displace-
ment of inter-instance and intra-instance segments be-
tween two consecutive frames I; and I, ;. These displace-
ments are used to encode predicates such as Moves(x),
SpeedUp(x), SpeedDown(x), AtLeft(x), CloseToCamera(x),
and Distancelncreases(x, y), which represent various spatial
relationships and movements of objects.

To calculate the spatial displacement, we first utilize the
estimated depth map to obtain the 3D coordinates of each

pixel in the current frame’s camera coordinate space. Given
a pixel with 2D image coordinates (z7,y7), we compute its
corresponding 3D coordinates (X7,Y7, Z7) using standard
: fection: XJ — (&—ce)? i (W —cy)?
perspective projection: X7 = — Y = B
and Z7 = 27. Here, 27 is the depth value for the j* pixel
retrieved from the estimated depth map, (¢, ¢,) is the optical
center of the camera, and (f;, f,) is the focal length of the
camera. For our visual-spatial reasoning, we consider the
X-axis and Z-axis planes (bird’s eye view) by discarding
the Y-axis component along the height. This means that
we only use the (X, Z) coordinates when reasoning about
object-object relationships and their spatial displacements.

To estimate the relative displacement of objects across
frames, we need to establish a common world coordinate
system origin for all frames within the window. Traditional
approaches for this estimation include the SLAM [28] or
Structure from Motion (SfM) [29] techniques. However, these
techniques are computationally expensive. As an alternative,
we propose an approximation strategy that leverages the
relative stability of static objects compared to dynamic
objects in two consecutive frames. Our approach assumes
that the locations of static objects (e.g., trees, buildings,
and poles) remain nearly constant between two consecutive
frames, while dynamic objects (e.g., vehicles, persons) move
more significantly. We feed the locations of static objects
from two consecutive frames into a multilateration [30]
algorithm, which yields a temporary origin that remains
mostly constant between the two frames. This temporary
origin serves as a reference point for estimating the relative
displacement of moving objects between consecutive frames.
This enables efficient computation of object trajectories and
spatial relationships.

We use the displacement calculated from the temporary
origin to derive the velocity and acceleration of moving
objects. We then utilize these values to establish various
predicates in our KB. For example, we evaluate the predicate
Moves(vehicleOl) as true if the displacement of the object
vehicleOI within a sliding window exceeds 0. Similarly, we
evaluate the predicate SpeedUp(vehicleOl) as true if the
velocity of vehicleOl at the end of a sliding window exceeds
its initial velocity.

C. Query-to-Logic Embedder

We employ an open-source large language model (e.g.,
LLaMa 3 [31] or Phi-3 [32]) with few-shot prompting. Our
prompt includes: a) Our predefined predicates; b) Pairs of
natural language statements and their corresponding FOL
predicates; and c) A few pairs of natural language questions
and their corresponding FOL queries. This concise yet
expressive prompt enables the conversion of natural language
queries into FOL predicates in conjunctive normal form
(CNF), which we term (CNF) embedding. For example,
given the natural language question “Does the white car
at the center move at a constant speed?”, our Query-to-
Logic Embedder generates the logic: (TypeOfix) = Car) A
(ColorOf(x) = White) A AtCenter(x) A ConstantSpeed(x)
During our evaluation of 645 natural language questions, we
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Atomic Predicates and Statements

Semantic
Segmentation

Road(x), LaneMarking(x), TrafficSign(x), Sidewalk(x), Fence(x), Pole(x), Wall(x), Building(x), Vegetation(x), Vehicle(x),
Pedestrian(x), Other(x)

Tracker

Appears(x), Disappears(x), Moves(x), SpeedUp(x), SpeedDown(x), CloseToCamera(x), AtRight(x) , AtLeft(x), AtCenter(x),

Distancelncreases(x, y), DistanceDecreases(x, y), DistanceDecreasesToZero(x, y) On(x, y)

Functions ColorOfix), TypeOfix)
Stopped Vz : (mMoves(x)) — Stopped(x)
Walk Va : ((Pedestrian(x) N Moves(x)) — Walk(x)
Stand Vz : ((Pedestrian(x) A ~Moves(x)) — Stand(x)
Derived Accelerate Vx : (Vehicle(x) N SpeedUp(x)) — Accelerate(x)

Constant Speed

Va : (Vehicle(x) N =SpeedUp(x) \ ~SpeedDown(x)) — ConstantSpeed(x)

Increase Pace

Vz : ((Pedestrian(x) A\ SpeedUp(x)) — IncreasePace(x)

Fixed Pace

Vz : ((Pedestrian(x) A —SpeedUp(x) N\ ~SpeedDown(x)) — FixedPace(x)

Getting closer

Vz,y : (DistanceDecreases(z, y)) — GettingCloser(z, y)

Collide

Vx,y : (DistanceDecreases(x, y) N DistanceDecreasesToZero(x, y)) — Collide(x, y)

TABLE I
A PARTIAL LIST OF BASE PREDICATES, FUNCTIONS, AND STATEMENTS REPRESENTING OBJECT PROPERTIES, SPATIAL RELATIONSHIPS, AND EVENTS.

observed no errors in the embedder’s output, demonstrating
its robustness. The resulting FOL query is then passed to the
Inference Engine for processing.

D. Inference Engine

We built our inference system with two established tools:
miniKanren [33], a symbolic computation framework, and
aima-python [34], which implements FOL representation
and inference based on Russell and Norvig’s work [19]. To
derive new facts from our KB, we apply standard logical
principles such as modus ponens and resolution. For example,
to identify objects approaching a specific vehicle, we can
query GettingCloser(vehicle0l1, y), which binds variable y
to all objects moving closer to vehicleOl within the current
window. Our inference is sound; it ensures that we derive
only valid conclusions from the given premises.

IV. VISUAL-SPATIAL REASONING EXPERIMENTS

We conducted the experiment by first creating a synthetic
dataset with the CARLA [35] simulator, to ensure we have
access to ground truth to evaluate our perception module.
We then composed questions from this dataset to assess the
effectiveness of our framework against two state-of-the-art
commercial models, LMM-1: GPT-4V [12] and LMM 2:
Claude 3.5 [13]. Lastly, we integrate our framework into
these LMMs with and without logical inference and measure
performance differences. We also conduct an experiment on
KITTI object tracking dataset [16] to evaluate the effective-
ness of our framework on real-world scenarios.

A. Reasoning on Synthetic Dataset

a) Evaluation Dataset: We generated distinct environ-
mental conditions in Carla Simulator by altering various
properties, including Day, Night, Rain, Snow, and Sunset.
We captured 5,256 video frames at 10 fps, divided into 525
sequences of 10 consecutive frames each. For each frame, we
extracted the corresponding depth map, semantic segmentation
map with 12 categories, and instance segmentation map.

b) Implementation Details of the Perception Module:
We fine-tuned several models in our perception module
(Fig. 4) using a separate training dataset of 9,706 syn-
thetic RGB images with pixel-level annotations for semantic
segmentation and depth. For the semantic segmentation
submodule, we fine-tuned HRNetv2 [22] using its official
PyTorch implementation. We used the pre-trained model of
Rigid Mask [36] for the optical flow submodule without
fine tuning. For the depth estimation submodule, we fine-
tuned PixelFormer [25] using its official implementation. We
conducted all training and inference on a single Nvidia RTX
A6000 GPU with 48GB memory. Note that input and output
interfaces of these models are well-defined so that we can
seamlessly replace a model with a better one within the
perception module.

c) Evaluation Criteria: From the evaluation dataset, we
selected 95 sequences of 10 consecutive frames and composed
3-9 visual-spatial reasoning (VSR) questions per sequence.
These questions included object attributes, actions, object-
object relationships, and events. We ensure question validity
by focusing on objects present for at least one-third of the
sliding window, referring to them by color and position. We
composed all questions manually. All authors collaboratively
analyzed each frame sequence to ensure questions were
answerable from visual information in the frames, without
introducing bias toward any specific model architecture. In
total, we prepared 645 such questions.

We manually categorize questions into Unary (about one
object) and Binary (involving two objects). Unary subcate-
gories include object query (U1), velocity (U2), change in
velocity (U3), and object appearance/disappearance (U4).
The binary subcategories are relative position (B1) and
relative distance change (B2).

For each frame sequence and question set, we generated
responses under three conditions:

C1 Logic-RAG, LMM-1, and LMM-2 in standalone.
C2 LMM-1 and LMM-2 with Logic-RAG via LangChain.
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C3 LMM-1 and LMM-2 provided with template sentences
of facts from Logic-RAG (ablation, no logical inference).

We manually verified all responses under each condition,
compared results with the oracle, and reported accuracy and
F scores in Table II.

d) Results: Condition C1: When we populate the KB
using ground truth for the perception module, Logic-RAG
unsurprisingly achieves 100% accuracy. This suggests that
our FOL predicates can express and infer the correct response.
However, our current implementation of the perception
module reaches 82% average accuracy (Fj score: 0.88).
Although it outperforms standalone LMM-1 and LMM-2
in all question categories (overall accuracy: 0.54 and 0.57;
overall F} score: 0.68 and 0.70, respectively), it indicates
room for improvement, which is feasible by replacing current
models with newer, better ones.

e) Results: Condition C2: LMM-1 and LMM-2 inte-
grated with Logic-RAG are the best-performing models that
yields the same performance as the standalone Logic-RAG.
This is because LMMSs’ responses are conditioned by the
inference output of Logic-RAG.

f) Results: Condition C3: LMMs with only the kB (in
template sentences) of Logic-RAG still outperform LLMs
without it. For example, LMM-1 achieves an accuracy of
0.69 and an F) score of 0.79, while LMM-2 reaches 0.72
and 0.81, respectively. Compared to standalone LMMs, this
represents a 15% improvement in accuracy and an 11%
increase in F) score. The integration of template sentences
significantly enhances LMMs’ performance, particularly for
complex reasoning questions. For U3, we observe Fj score
improvements of 0.35 and 0.15 for LMM-1 and LMM-2,
respectively. Similarly, for B2, improvements of 0.14 and
0.10 are observed in the F} score for LMM-1 and LMM-2,
respectively (Table II).

g) Results: VSR question types: LMM-1 and LMM-2 in
standalone condition perform reasonably well in simple object
queries (I scores: 0.87 and 0.85), but struggle with deeper
spatial understanding tasks. Their performance decreases for
changes in velocity (U3) (F; scores: 0.44 and 0.60) and
relative distance change (B2) (Fy scores: 0.59 and 0.62),
indicating limitations in complex spatial reasoning.

B. Testing the Replacibility of Components within Perception
Module and Performance on Real-World Driving Dataset

In this experiment, we evaluated how easily one could
replace various components in the perception module by

substituting them with newer ones. Specifically, we substituted
Mask2Former [37] with HRNetv2 [22] and CoTracker3 [38]
with Rigid Mask [36]. We used these models without fine-
tuning or modifying other system components.

We used the test set of the KITTI object tracking
dataset [16]. It contained 29 real-world video sequences
(84 to 1,175 frames each, totaling approximately 11,000
frames). Similar to our previous experiment, we cut these
sequences into 10-frame clips, yielding 1,100 clips total.
From this collection, we randomly selected 19 clips and
manually created 100 visual-spatial reasoning questions with
corresponding ground-truth answers. We then generated
responses under condition C1 to compare our reconfigured
system’s real-world performance directly against baseline
methods (LMM-1 and LMM-2) operating in standalone mode.

Method Accuracy Iz

Logic-RAG 0.91 0.95

LMM-1 (w/o LR) 0.71 0.83

LMM-2 (w/o LR) 0.74 0.84
TABLE 111

ACCURACY AND F SCORES OF LOGIC-RAG WITH UPDATED PERCEPTION
MODULE AND BASELINES FOR VSR QUESTIONS ON KITTI DATASET.

a) Results: Logic-RAG with its updated perception
module achieved 91% accuracy (Fi score: 0.95), outperform-
ing both baseline methods. Compared to LMM-1 (accuracy:
71%; F} score: 0.83) and LMM-2 (accuracy: 74%; F} score:
0.84), our system demonstrated improvements of 20 and
17 percentage points respectively. Table III presents these
comparative results in detail.

V. CONCLUSION

We introduce Logic-RAG, a first-order logic-based frame-
work that enhances visual-spatial reasoning capabilities of
popular LMMs through the retrieval-augmented generation
mechanism. Logic-RAG constructs a dynamic knowledge
base about object-object relationships and spatial dynamics in
driving scenes. This work addresses crucial spatial reasoning
deficiencies in LMMs for autonomous driving applications,
improving system interpretability and user trust. Future
research could focus on extending the framework to more
complex scenarios, incorporating temporal reasoning, and
exploring real-time optimizations for practical deployment in
autonomous vehicles.

VI. ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation under grant #2326406.



[1]

[2

—

[3]

[4

=

[5

[t}

[6]

[7

—

[9]

[10]

(1]

[12]
[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

D. Omeiza, H. Webb, M. Jirotka, and L. Kunze, “Explanations in
autonomous driving: A survey,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 8, pp. 10142-10162, 2021.

Z. Yang, X. Jia, H. Li, and J. Yan, “A survey of large language models
for autonomous driving,” arXiv preprint arXiv:2311.01043, 2023.

X. Zhou, M. Liu, B. L. Zagar, E. Yurtsever, and A. C. Knoll, “Vision
language models in autonomous driving and intelligent transportation
systems,” arXiv preprint arXiv:2310.14414, 2023.

Z. Xu, Y. Zhang, E. Xie, Z. Zhao, Y. Guo, K.-Y. K. Wong, Z. Li, and
H. Zhao, “Drivegpt4: Interpretable end-to-end autonomous driving via
large language model,” IEEE Robotics and Automation Letters, 2024.
L. Chen, O. Sinavski, J. Hiinermann, A. Karnsund, A. J. Willmott,
D. Birch, D. Maund, and J. Shotton, “Driving with 1lms: Fusing
object-level vector modality for explainable autonomous driving,” arXiv
preprint arXiv:2310.01957, 2023.

F. Liu, G. Emerson, and N. Collier, “Visual spatial reasoning,”
Transactions of the Association for Computational Linguistics, vol. 11,
pp. 635-651, 2023.

A. Kamath, J. Hessel, and K.-W. Chang, “What’s" up" with vision-
language models? investigating their struggle with spatial reasoning,”
arXiv preprint arXiv:2310.19785, 2023.

T. Thrush, R. Jiang, M. Bartolo, A. Singh, A. Williams, D. Kiela,
and C. Ross, “Winoground: Probing vision and language models for
visio-linguistic compositionality,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
5238-5248.

L. Pan, A. Albalak, X. Wang, and W. Wang, “Logic-LM:
Empowering large language models with symbolic solvers for
faithful logical reasoning,” in Findings of the Association for
Computational Linguistics: EMNLP 2023, H. Bouamor, J. Pino,
and K. Bali, Eds. Singapore: Association for Computational
Linguistics, Dec. 2023, pp. 3806-3824. [Online]. Available:
https://aclanthology.org/2023.findings-emnlp.248

P. West, X. Lu, N. Dziri, F. Brahman, L. Li, J. D. Hwang, L. Jiang,
J. Fisher, A. Ravichander, K. Chandu, er al., “The generative ai
paradox:“what it can create, it may not understand”,” in The Twelfth
International Conference on Learning Representations, 2023.

S. Banerjee, A. Agarwal, and S. Singla, “Llms will always hallucinate,
and we need to live with this,” arXiv preprint arXiv:2409.05746, 2024.
OpenAl, “GPT-4,” 2024.

Anthropic, “Claude 3 opus,” 2024.
/Iclaude.ai/chats

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Kiittler, M. Lewis, W.-t. Yih, T. Rocktischel, et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” in Advances
in Neural Information Processing Systems, 2020.

K. Lu, S. Zhang, P. Stone, and X. Chen, “Robot representation and
reasoning with knowledge from reinforcement learning,” arXiv preprint
arXiv:1809.11074, 2018.

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE conference on
computer vision and pattern recognition. 1EEE, 2012, pp. 3354-3361.
T. Gupta, A. Kamath, A. Kembhavi, and D. Hoiem, “Towards general
purpose vision systems: An end-to-end task-agnostic vision-language
architecture,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 16 399-16 409.

N. Rajabi and J. Kosecka, “Towards grounded visual spatial reasoning
in multi-modal vision language models,” ICLR, 2024.

S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Pearson Education Limited, 2016.

R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, and L. De Raedt,
“Deepproblog: Neural probabilistic logic programming,” in Advances
in Neural Information Processing Systems, 2018.

T. Rocktéschel and S. Riedel, “End-to-end differentiable proving,” in
Advances in Neural Information Processing Systems, 2017.

J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu,
M. Tan, X. Wang, et al., “Deep high-resolution representation learning
for visual recognition,” IEEE transactions on pattern analysis and
machine intelligence, vol. 43, no. 10, pp. 3349-3364, 2020.

J. Lambert, Z. Liu, O. Sener, J. Hays, and V. Koltun, “Mseg:
A composite dataset for multi-domain semantic segmentation,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 2879-2888.

[Online]. Available: https:

[24]

[25]

[26]

(27

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

G. Yang and D. Ramanan, “Learning to segment rigid motions from
two frames,” in CVPR, 2021.

A. Agarwal and C. Arora, “Attention attention everywhere: Monocular
depth prediction with skip attention,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), 2023.
M. A. Reza, H. Zheng, G. Georgakis, and J. KoSeckd, “Label propaga-
tion in rgb-d video,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 1EEE, 2017, pp. 4917-4922.
A. Roshan Zamir, A. Dehghan, and M. Shah, “Gmcp-tracker: Global
multi-object tracking using generalized minimum clique graphs,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2012.

H. Durrant-Whyte and T. Bailey, “Simultaneous localization and
mapping: part i,” IEEE Robotics & Automation Magazine, vol. 13,
no. 2, pp. 99-110, 2006.

Y. Furukawa and C. Herndndez, ‘“Multi-view stereo: A tutorial,”
Foundations and Trends® in Computer Graphics and Vision, vol. 9,
no. 1-2, pp. 1-148, 2015.

H. B. Lee et al.,, “Accuracy limitations of range-range (spherical)
multilateration systems.” Lincoln Laboratory, Tech. Rep., 1973.

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
A. Mathur, A. Schelten, A. Yang, A. Fan, ef al., “The llama 3 herd of
models,” arXiv preprint arXiv:2407.21783, 2024.

M. Abdin, S. A. Jacobs, A. A. Awan, J. Aneja, A. Awadallah,
H. Awadalla, N. Bach, A. Bahree, A. Bakhtiari, H. Behl, et al., “Phi-3
technical report: A highly capable language model locally on your
phone,” arXiv preprint arXiv:2404.14219, 2024.

B. T. Willard, “minikanren as a tool for symbolic computation in
python,” arXiv preprint arXiv:2005.11644, 2020.

Aimacode, “GitHub - aimacode/aima-python: Python implementation
of algorithms from Russell And Norvig’s "Artificial Intelligence - A
Modern Approach".” [Online]. Available: https://github.com/aimacode/
aima-python

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1-16.

G. Yang and D. Ramanan, “Learning to segment rigid motions from
two frames,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2021, pp. 1266-1275.

B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar,
“Masked-attention mask transformer for universal image segmentation,”
2022.

N. Karaev, I. Makarov, J. Wang, N. Neverova, A. Vedaldi, and
C. Rupprecht, “Cotracker3: Simpler and better point tracking by pseudo-
labelling real videos,” arXiv preprint arXiv:2410.11831, 2024.



