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Abstract— This paper tackles image segmentation problems
for underwater environments. First, we introduce a novel under-
water animal-centric dataset with dense pixel-level annotations
containing diverse fine-grained animal categories to mitigate
the lack of diverse categories in the existing benchmarks.
Then, we solve two image segmentation tasks using underwater
images in this dataset: (i) few-shot segmentation, and (ii)
semantic segmentation. For the segmentation task in a few-
shot learning framework, we propose a novel attention-guided
deep neural network architecture by infusing attention modules
in various stages of our proposed network. We systematically
explore how the learned attention maps can improve few-shot
segmentation performance for underwater imagery. Finally, we
assess the semantic segmentation problem on our proposed
dataset by benchmarking it with two state-of-the-art semantic
segmentation methods. We believe our new problem setup,
i.e., few-shot segmentation for underwater environments, will
be a valuable addition to the existing underwater semantic
segmentation task. We believe our novel dataset will pave
the way for developing better algorithms and exploring new
research directions for marine robotics and underwater image
understanding. We publicly release our dataset and the code to
advance image understanding research in underwater environ-
ments: https://github.com/Imran2205/uwsnet.

I. INTRODUCTION

Semantic segmentation is the task of assigning labels to
image pixels from a predefined set of object categories.
This classic computer vision problem has been extensively
explored in both indoor and outdoor environments. Tra-
ditional approaches to solving semantic segmentation re-
quire the careful design of hand-engineered features [1],
[2], [3]. The success of deep learning in various other
image understanding problems paved the way for replacing
the hand-engineered feature extraction process with deep
neural network-based approaches. These end-to-end trainable
networks produce more accurate segmentation [4], [5], [6],
[7]. Nevertheless, these supervised methods require pixel-
level manually annotated images, making the process highly
time-consuming and labor-intensive. For example, annotating
a single image might require 60-94 minutes, depending on
the complexity of the scene [8], [9], [10]. Several possi-
bilities have been explored to reduce the laborious manual
annotation efforts [11], [12], [13]. One suggested solution is
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Fig. 1: Top row: Few-shot segmentation for underwater
environments where the task is to find the segmentation map
of the query image given the support image. Next to the
query image, the ground truth, and predicted segmentation
using our proposed method. Bottom row: Two pairs of
input images and their corresponding semantic segmentation
ground truths from our newly proposed underwater dataset
with diverse animal categories. FSS: Few-Shot Segmentation.
SS: Semantic Segmentation.

to annotate a single pixel inside each object [11]. However,
the segmentation obtained from a model trained using those
annotations exhibits lower levels of accuracy. An alternative
approach involves augmenting the current training dataset
of hand-annotated images by incorporating a substantial
collection of synthetically generated images along with their
corresponding annotations [12], [13]. This strategy requires
an extensive collection of 3D models, their arrangement in a
scene, and the utilization of a graphical rendering pipeline.
Nonetheless, these synthetically rendered images may not
fully capture the realism present in natural images. When
facing a scarcity of large-scale training images, whether
manually annotated or synthetically rendered, a viable alter-
native is to explore segmentation solutions within a few-shot
learning framework [14], [15], [16], [17].

Several studies have delved into the few-shot segmentation
solution in both indoor and outdoor environments [18], [15].
However, the segmentation in underwater environments has
received relatively less attention. One contributing factor is
the absence of a suitable dataset that encompasses a diverse
range of marine life. In recent times, Islam et al. [19] intro-
duced a semantic segmentation solution, along with a well-
suited dataset curated for oceanic exploration and human-
robot collaborative experiments. The dataset encompasses



eight semantic categories, with the only animal category
being a generic fish (vertebrates) as shown in Figure 2.
The remaining categories represent common background
elements such as reefs, wrecks, sea floor, etc.

To this end, we present a segmentation framework de-
signed for underwater environments, boasting diverse ap-
plications such as fine-grained aquatic animal monitoring,
underwater environment exploration, and robot collision
avoidance [20]. Recent efforts to address the scarcity of
underwater animal-centric datasets have certain limitations.
These datasets either include multiple underwater animals,
but with annotations limited to bounding-box level [21], or
they have pixel-level annotations but cover only a smaller
set of generic animal categories [19] (Fig 2). To overcome
these constraints, we present a novel dataset with dense pixel-
wise annotations, encompassing a diverse collection of 21
commonly found underwater animals such as shrimp, crab,
turtle, shark, whale, crocodile. Ochal et al. [22] performed a
comparative study of few-shot image classification methods
in the underwater environment, employing both optical and
sonar images. In contrast, our work goes beyond the scope
of classification and delves into the task of dense pixel-wise
segmentation within a few-shot learning framework. To the
best of our knowledge, our work represents the first attempt
to formulate few-shot segmentation within the context of
underwater imagery. In summary, our contributions can be
outlined as follows:

o Introduce a novel underwater animal-centric dataset
comprising 576 images, with complete pixel-level an-
notations covering a diverse range of animal cate-
gories commonly found in underwater environments.
Our dataset demonstrates 21 times greater diversity
compared to the underwater segmentation dataset [19].

o Formulate the segmentation problem for underwater
environments using a few-shot learning framework,
and propose an innovative attention-guided deep neural
network architecture for few-shot segmentation. We sys-
tematically investigate how the learned attention maps
can enhance few-shot segmentation performance for
underwater imagery. In 1-shot experiments, our top-
performing model achieved remarkable improvements
of 2.12%, 0.56%, 6.47 %, and 4.48% over PANet [15],
PMMs [16], HSNet [23] and ASNet [17], respectively,
in mean IoU metric.

« Benchmark the proposed dataset for the task of semantic
segmentation by employing two state-of-the-art meth-
ods, namely Mask2Former [24] and HRNetV2 [25].

The dataset, code, and trained models are openly acces-
sible to the research community at the following link:
https://github.com/Imran2205/uwsnet.

II. RELATED WORK

Image segmentation involves the task of dividing an im-
age into meaningful regions that possess similar visual or
geometric properties. In the past, conventional segmentation
approaches relied on low-level image cues [26], [27], [1]
to group these regions. While these traditional methods

effectively partition the image into meaningful regions, the
regions themselves do not carry any class information.
Semantic Segmentation. A more meaningful task, known
as semantic segmentation, is to assign labels to the par-
titioned regions. With the advent of deep learning, vari-
ous deep neural network-based semantic segmentation so-
lutions have been proposed, such as FCN [7], SegNet [6],
DeepLab [5], HRNet [25], and Mask2Former [24]. More
recently, several semantic segmentation datasets and methods
have been proposed for autonomous driving applications [9],
[10], [28], [29] or for off-road environments [30].
Few-shot Segmentation. Dong et al. [18] explored N-way
k-shot segmentation. They employed a two-branch architec-
ture, where the first branch acted as a feature vector extractor
(prototype learner) and regularizer to avoid over-fitting. The
second branch took the query image and the feature vector as
input to produce a segmentation mask. Distance metric learn-
ing and non-parametric nearest neighbor classifiers were used
to further improve the performance. PANet [15] proposed
an effective network architecture that interchangeably used
support and query images during training to reduce over-
fitting. Yang et al. [16] proposed a prototype mixture model
(PMMs) for few-shot segmentation. This model enforces
the prototype-based semantic representation by correlating
diverse regions of images with multiple prototypes. PMMs
uses two CNNs with shared weights in the query and support
branches as their backbone. The work of [31] et al. devel-
oped a probabilistic latent variable framework for few-shot
segmentation. This model integrates attention to prototype
construction. Min et al. [23] introduced the idea of squeezing
a hypercorrelation with a 4D convolution in a pyramidal
network. This method improves performance by gradually
squeezing the feature dimension and aggregating local infor-
mation into a global context. Kang et al. [17] extended the
idea and improved the performance of the hypercorrelation-
based model by introducing global self-attention to it. To this
end, we build on the work of PANet [15] and infuse different
types of attention modules to construct a novel prototype
and assess their efficacy. Our experimental results suggest
that adding attention modules helps improve the few-shot
segmentation performance in underwater environments.

III. PIXEL-WISE DENSELY ANNOTATED UNDERWATER
DATASET WITH DIVERSE ANIMALS

In contrast to the abundance of datasets available for
outdoor and indoor environments, there is a scarcity of such
resources for underwater settings. The majority of existing
underwater datasets either contain annotations limited to
bounding-box level [21] or encompass a limited number
of animal categories [19], [21]. We addressed the issue
of limited category representation by introducing the Un-
derwater Segmentation (UWS) dataset. This novel dataset
consists of 576 images, each densely pixel-level annotated,
encompassing various entities commonly found in underwa-
ter environments, whether in the wild or within man-made
conservatories like aquariums. All images in the dataset were
collected from the internet using query terms such as shark,



polar bear, etc. The dataset includes annotations for two
task settings: i) Semantic Segmentation, and ii) Few-shot
Segmentation. We provide further details on each of these
settings.

Semantic Segmentation Setting. The SUIM dataset [19],
featuring dense pixel-level annotations, is specifically de-
signed for oceanic exploration and human-robot collabora-
tive experiments in underwater environments. This dataset
comprises only eight semantic categories, namely fish (ver-
tebrates), reefs (invertebrates), aquatic plants, wrecks/ruins,
human divers, robots, and sea-floor. However, it includes
only one generic underwater animal category, fish (verte-
brates). In contrast, our UWS dataset presents fine-grained
underwater animal categories, such as seal, turtle, starfish,
shrimp, crab, etc., showcasing twenty-one times more di-
verse animals. Additionally, the UWS dataset contains an
additional 8 background categories, such as coral, rock,
water, sand, plant, human, iceberg, and reef. The bar charts
presented in Figure 2 illustrate the distinctions between the
SUIM dataset and our UWS dataset.
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Fig. 2: Class-wise distribution of the images of the
SUIM [19] dataset (top bar chart) and our proposed underwa-
ter segmentation dataset (UWS) for semantic segmentation
setting (bottom bar chart).
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Fig. 3: Class-wise distribution of the images of our proposed
underwater segmentation dataset (UWS) for few-shot seg-
mentation setting.

Few-shot Segmentation Setting. For the few-shot seg-
mentation setting, we prepared separate ground truths by
retaining only the 21 underwater animal categories while
collapsing others into a single background. The distribution
of these 21 underwater animal categories is visualized in
Figure 3. Figure 1 (top row) presents a sample image along
with its corresponding ground truth annotation. We utilized
the LabelMe Annotation Tool [32] to annotate the images.

IV. METHOD
A. Proposed Approach for Few-shot Segmentation:

To define the few-shot segmentation task for underwater
environments, we are given a set of query images /gy for
which we want to predict the object segmentation masks.
We are also given another set of associated support images
Tsupport to help learn these segmentation masks. During
training, we have ground truths for both support and query
images. The setup is defined in an N-ways-n-shot format,
where N represents the number of classes, and n indicates
the number of support images needed to predict a segmenta-
tion mask for a query image. Following the prevalent setup
found in existing few-shot segmentation literature [15], our
underwater segmentation task involves learning to predict 1-
way-1-shot and 1-way-5-shot segmentations. In the 1-shot
scenario, the model uses one support image, while in the
5-shot scenario, it employs five support images to generate
segmentation predictions. In this binary segmentation setup,
the foreground refers to various underwater object classes
like polar bear, shark, crocodile, etc., while the background
encompasses elements such as water, rock, coral, plant,
iceberg, reef, and so on. We build upon the foundations
of PANet [15] and extend its capabilities by introducing
a novel attention-guided architecture specifically designed
for few-shot segmentation tasks. Our network architecture
is illustrated in Figure 4. A description of the distinct
components of our network architecture is discussed in the
subsequent subsections.

1) Shared Feature Extractor with Attention: Given a pair
of two sets of images — support image(s) (top branch) and a
query image (bottom branch) — the Shared Feature Extractor
with Attention module extracts 2D convolutional features for
both sets. In the Shared Feature Extractor with Attention,
we used a pretrained VGG-16 [33] as a 2D convolutional
backbone and augmented it with an attention submodule to
extract the features for the given support image(s) and the
query image. The weights of this module are shared between
both branches. The outputs of this module would be two sets
of CNN feature maps (Fsupports Fyuery)-

2) Attention Guided Prototype Construction: Then we
focus on constructing a useful compact prototype from the
support feature map Flsyppore. Ideally, this prototype should
encode important features of our object of interest, which we
want to segment in the query image. One simple idea would
be to apply a pooling operation to aggregate the information
captured by the support feature map Fiyppori. More pre-
cisely, a global average pooling or max-pooling operation
could be applied across the channels of Fiyppore [34]. In
contrast, motivated by the success of the attention mechanism
in various other computer vision tasks, we propose to learn
an attention map on the support feature map F,pp0r¢. Denote
the learned attention map as Agypport. Then, a prototype
Pgupport can be constructed based on this newly learned
attention map, which can be subsequently matched against
the attention map of the query image using the cosine
similarity measure (as shown in the bottom branch within the
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Fig. 4: Top part (above the green line): Our proposed network architecture for few-shot segmentation. Given support set
image(s) and a query image, the network uses Shared Feature Extractor with Attention module to extract feature maps
Foupport and Fyyeryy. From these two initial feature maps, Attention Guided Feature Map Constructor creates two attention
maps Agsupport and Agyery. We construct our prototype from the attention map Agypport, Which we match against Agyery
to generate the segmentation map for the input query image. A symmetric mechanism is followed by reversing the roles of
support and query (as depicted on the right-most branch within the blue-dashed rectangle). Bottom part (below the green
line): Details of our Feature Extractor with Attention and Attention Guided Feature Map Constructor modules. Best viewed

in color.

red-dashed rectangle in Figure 4). Our prototype Piupport
is a vector of dimension 1xC, where C is the number of
channels in the attention map Agypport. We compute average
pooling on the attention map to construct the prototype. In
5-shot segmentation, we aggregate the five prototypes into a
single prototype for the support images by averaging them.
A similar attention map is learned for the query feature
map Fy,er, before computing the cosine similarity between
the support prototype Psyppor¢ and the attention map of
the query feature map Agyery. During the training phase
of our model, we follow the above-mentioned method in
reverse order (as shown in the right-most branch within
the blue-dashed rectangle in Figure 4). In other words, we
try to predict the true label for support image(s) using the
query image. We want to emphasize that this specific branch
of the model is not executed during the inference stage.
During our experiments, we investigated two different types
of attention mechanisms: i) ECA attention [35], and ii) triplet
attention [36].

ECA Attention Module. ECA attention learns attention
weights across the channels of an input tensor using a com-
bination of global feature descriptor, adaptive neighborhood
interaction, and broadcasted scaling. For additional details,
we refer to the work of [35].

Triplet Attention Module. To better utilize different
cross-dimensional relationships of the input feature map, we
explore the triplet attention module. For additional details,
we refer to the work of [36].

3) Loss Function: We train our network using pixel-wise
cross-entropy loss. Additionally, we noticed performance
gains with a dice loss [37], which measures the intersection

over the union between the predicted mask and the ground
truth mask. Given T training query images, the dice loss is
computed as follows:

T
L:Z—D

i=1

)

where D is the dice coefficient computed as follows: D =

%, and we took the negative of the dice co-

efﬁc1ent because while training, the model tries to minimize
the loss. IV is the number of pixels in each training sample,
p is the foreground segmentation prediction for it query
image, and g; is the corresponding ground truth. Our final
loss is the sum of the loss calculated between the query
segmentation prediction and the ground truth, L,.,, and
the loss calculated between support segmentation prediction
and the ground truth of support images during the query to
support segmentation, Lqig,. Our final loss is computed as
follows:

= Lseg + Lalign (2)

For 5-shot segmentation, L4y is the average of losses
calculated for five support images.

Etotal

B. Semantic Segmentation

Upon introducing a new task — the few-shot segmenta-
tion task — specifically tailored for underwater images, and
proposing a novel method for addressing it, we also address
an existing segmentation task — semantic segmentation in
underwater environments [19]. Mathematically, given an
image I, the task is to assign each pixel to one semantic
label from a fixed set of semantic categories {1,2,...,C},



1-shot 5-shot

Model

Shared Feature  Attention Guided  Attention Guided  Dice
Extraction Feature Map Feature Map Loss Split1 Split2 Split3  Split 4 Mean Split 1~ Split2  Split 3 Split 4 Mean
with Attention (for Support) (for Query)
UWSNetV1 ECA ECA 0.6881  0.6145 0.6679 0.6760 0.6616  0.7187  0.6394  0.6939  0.6878  0.6850
UWSNetV2 ECA ECA ECA 0.7048  0.6236  0.6750  0.7022  0.6764  0.7420  0.6291  0.7009  0.7077  0.6949
UWSNetV3 Triplet Triplet 0.7028  0.6094  0.6720  0.6639  0.6620  0.7145 0.6344  0.6809  0.6952 0.6813
UWSNetV4 Triplet Triplet 0.6989  0.6096 0.6577  0.6760  0.6606 0.7179  0.6384  0.6904 0.6921  0.6847
UWSNetV5 Triplet Triplet Triplet 0.7068  0.6017  0.6705 0.7016  0.6702  0.7402  0.6197 0.6947 0.7115  0.6915
UWSNetV6 Triplet Triplet Triplet v 0.7066  0.6175  0.6813  0.6981  0.6759  0.7421  0.6396  0.7008 0.7048  0.6968

TABLE I: Ablation study for 1-shot and 5-shot segmentations. Each row denotes a specific version of our model, where we
include or omit different components eg, attention modules, and dice loss in different stages of the proposed network (as
discussed in Section IV). Split ¢ denotes the model’s performance on the images of Split ¢, following training on the images
of the remaining three splits. The best performances are highlighted in boldfaces, while the second best are underlined.

1-shot 5-shot
Model
Split 1~ Split2  Split 3  Split4  Mean  Split1 Split2 Split3  Split4  Mean diff.

PANet (ICCV2019) [15] 0.6911  0.5992 0.6576  0.6729  0.6552  0.7157 0.6296  0.6822  0.6959  0.6809  0.0257
PMMs (ECCV2020) [16] 0.6876  0.6386  0.6570  0.7003  0.6708 0.7149  0.6379  0.6826 0.7091 0.6861  0.0153
HSNet (ICCV2021) [23] 0.6281  0.5739  0.6138 0.6309 0.6117 0.6801 0.6262  0.6887 0.6985 0.6734  0.0617
ASNet (CVPR2022) [17] 0.6293  0.5825 0.6704 0.6442 0.6316  0.6837 0.6523  0.7191 0.7326  0.6969  0.0653
UWSNetV2 0.7048  0.6236  0.6750  0.7022  0.6764 0.7420  0.6291  0.7009  0.7077  0.6949  0.0185
UWSNetV6 0.7066  0.6175 0.6813  0.6981 0.6759  0.7421  0.6396  0.7008  0.7048  0.6968  0.0209

TABLE II: Comparison with other state-of-the-art methods for

where C' is the total number of semantic categories. We
benchmarked our dataset for the semantic segmentation task
using two state-of-the-art methods: (i) Mask2Former [24],
and (ii) HRNetV2 [25].

V. EXPERIMENTS ON FEW-SHOT
SEGMENTATION

Dataset Split and Evaluation Metric. Following the
earlier few-shot segmentation works for other environ-
ments [38], [15], we created a split based on the animal
categories of our underwater dataset. We partitioned our
dataset of 21 classes into 4 folds. The first three folds
comprised 5 classes each, while the last fold contained 6
classes. The resulting splits are as follows: Split 1: {Crab,
Dolphin, Frog, Turtle, Whale}, Split 2: {Nettles, Octopus,
Sea Anemone, Shrimp, Stingray}, Split 3: {Penguin, Sea
Urchin, Seal, Shark, Nudibranch}, Split 4: { Crocodile, Oiter,
Polar Bear, Sea Horse, Star Fish, Squid}. We employed 3
splits for training the model, reserving the remaining split
for testing the trained model. It is crucial to emphasize that
during the model training phase, the classes included in
the test split were entirely unseen by the model. In other
words, the test split contained classes that the model had
never encountered during its training process. Denote the
training data classes as seen classes and testing data classes
as unseen classes. We randomly choose a class from the
seen classes to create the training samples. After selecting
the class, we proceed to randomly choose either 1 or 5 (for
1-shot and 5-shot, respectively) support images and 1 query
image from the chosen class. Following the work of [15],
we repeat this selection process 1000 times in each epoch to
create our training samples. Following the same protocol just
described, we create test samples on the unseen classes for
evaluation. A test split is comprised of 1000 image tuples
and we saved their file names for the reproducibility of
our model evaluation. Using cross-validation, we trained our

1-shot and 5-shot segmentations.

model on 3 splits and then evaluated the trained model on
the remaining split. For each split, we computed the mean
IoU (Intersection over Union) as the evaluation metric. This
involved calculating the IoU score for each class and then
taking the average over all classes.

Ablation Study. We conducted our experiments by vary-
ing the types of attention modules, their placements inside
our network architecture, and loss functions (see in Sec-
tion IV-A and Table I). By incorporating an instance of an
attention module within the shared feature extractor (e.g.,
UWSNetV2), we obtain two initial feature maps — support
feature map Fyyppor¢ and query feature map Fl,er, (as
shown in Figure 4). Then, another instance of the attention
module is used to construct attention maps Agypport and
Aguery from the support features and the query features,
respectively (as shown in Figure 4). In the process, our
UWSNetV2 model in Table I was obtained by using the ECA
Attention Module within the shared feature extractor, support,
and query branches. When we drop the ECA Attention
Module from the shared feature extractor while retaining it in
the support and query branches, we obtain our UWSNetV 1
model in Table I. If we replace all the instances of the
ECA Attention Module with the Triplet Attention Module in
our models UWSNetV2 and UWSNetV1, we obtain models
UWSNetV5 and UWSNetV3, respectively. We train these
four models using cross-entropy loss. If we replace the
cross-entropy losses with dice loss for training our models
UWSNetV3 and UWSNetV5, we obtain models UWSNetV4
and UWSNetV6, respectively. Dice loss is known to handle
class imbalance better, which could potentially improve the
performance of the models. The results of various combina-
tions of these experimental setups are reported in Table I.
Among the models, UWSNetV2 and UWSNetV6 emerged
as the top performers.

Implementation. We initialize our feature extractor with



Classes

Model

Crab Crocodile ~ Dolphin Frog Nettles Octopus Otter

Penguin  Polar Bear  Sea Ane.  Sea Urchin  Sea Horse Seal Shark  Shrimp mloU

0.6944
0.6489

0.8527
0.8789

0.6733
0.6800

0.7041
0.7345

0.5624
0.1819

0.5177
0.4315

0.7401
0.5450

HRNetV2 [25]
Mask2Former [24]

0.7165
0.7670

0.7477
0.9184

0.5420
0.2003

0.7229
0.5668

0.4807
0.2416

0.4126
0.5394

0.7772
0.6426

0.4300
0.6790

Star Fish  Stingray Squid Turtle Whale  Nudibranch ~ Coral

Rock Water Sand Plant Human Reef Other

HRNetV?2 [25]
Mask2Former [24]

0.8791
0.9482

0.8619
0.9266

0.4797
0.6225

0.5192
0.9260

0.7362
0.7210

0.6348
0.8019

0.2574
0.4786

0.2778
0.4369

0.8005
0.8904

0.5081
0.5660

0.4578
0.1161

0.5919
0.4541

0.2000
0.1024

0.0252
0.0970

0.5794
0.5770

TABLE III: Semantic segmentation results on our dataset using state-of-the-art methods for benchmarking.

VGG-16 [33] pretrained weights. All models were trained
using an SGD optimizer with a learning rate of 0.001, a
momentum of 0.9, and a weight decay of 0.0005. We trained
our model for 40 epochs with batch size 1, and at every
10000 iterations, the learning rate decayed by 0.1 times.

Time and Memory Complexities. Table II depicts the
top-performing models, UWSNetV2 and UWSNetV6, both
containing 14.7M parameters. Our models were trained and
tested using NVIDIA Titan Xp GPU. On a single GPU,
the inference times for processing an image in the 1-shot
and 5-shot settings are approximately 200ms and 300ms (on
average), respectively.

Ground Truth Ours

red ad

Ground Truth

Ours

Support

Query

Fig. 5: Qualitative results for 1-shot segmentation using our
best model — UWSNetV6 (separate test cases in each row).

Discussions and Comparison with Other Methods.
We compare our method against four state-of-the-art few-
shot segmentation methods: (1) PANet [15], (2) Prototype
Mixture Model (PMMs) [16], (3) HSNet [23] and (4) AS-
Net [17]. All methods were trained using their publicly
available implementations. The quantitative comparisons are
reported in Table II. By incorporating attention modules, our
model was able to learn improved feature maps and proto-
types, resulting in better performance compared to PANet,
which shares a similar architectural layout with our model
but lacks attention modules. For our 1-shot segmentation
setup, the best mean IoU score of 67.64% was obtained
by our model UWSNetV2, with an improvement of 2.12%,
0.56%, 6.47% and 4.48% over the PANet, PMMs, HSNet,
and ASNet baseline models, respectively. In the case of the
5-shot segmentation setup, our method UWSNetV6 achieved
a mean IoU score of 69.68%, which is 1.59%, 1.07 %,
and 2.34% higher than the scores of PANet, PMMs, and
HSNet models, respectively, and comparable to the score
achieved by ASNet. We also observed that the dice loss was
more effective in improving the performance compared to

models trained with cross-entropy loss. This can be verified
by comparing the mean scores of UWSNetV5 (without dice
loss) and UWSNetV6 (with dice loss) in both 1-shot and 5-
shot segmentation. With dice loss, there is a gain of 0.57%
and 0.53% for 1-shot and 5-shot segmentation respectively.
Figure 5 shows some qualitative results, produced by our
best model UWSNetV6 for 1-shot segmentation. Notably, all
models demonstrate superior performance in 5-shot segmen-
tation compared to 1-shot segmentation. The models benefit
from learning better representations with the aid of multiple
support images for each object. The relative improvements
in performance between 1-shot and 5-shot segmentation are
reported in the rightmost column of Table II.

VI. EXPERIMENTS ON SEMANTIC
SEGMENTATION

Data Split and Evaluation Metric. For our semantic
segmentation task, we utilized the dense pixel-wise anno-
tations of all 29 categories present in our dataset (Figure 2).
To create train and test partitions, a random split with an
80:20 ratio was employed, resulting in a training set of
461 images and a test set of 113 images. During training,
data augmentation techniques such as random flip, shift, and
rotation were applied. The evaluation of the method was
performed using the standard mean IoU metric for semantic
segmentation.

Implementation Details and Discussion. We employed
the publicly available and official implementations of
Mask2Former [24] and HRNetV2 [25], and trained them on
our dataset. During training, we set the base learning rate to
1072 and 10~%, and the weight decay to 10~* and 5 x 102
for HRNetV2 and Mask2Former, respectively. Both models
were trained for 500 epochs. Table III presents the best class-
wise IoU score and mean IoU over 29 categories after 100
epochs of training. The mean IoU scores achieved by the
two networks were comparable, with the HRNetV2 model
achieving a slightly higher score of 57.94% mloU compared
to Mask2Former.

VII. CONCLUSION AND FUTURE WORK

In this study, we addressed the image segmentation chal-
lenges in underwater environments through the lens of few-
shot learning. To tackle this problem, we presented a novel
architecture specifically designed for few-shot segmentation
tasks. The integration of attention maps in our proposed
architecture yielded improved few-shot segmentation results
when compared to methods lacking attention modules. To
facilitate research in this domain and mitigate the scarcity
of dense pixel-level annotations in underwater datasets, we



introduced a novel underwater animal-centric dataset. Ad-
ditionally, we evaluated the performance of our dataset for
semantic segmentation using state-of-the-art methods in the
field. Our future plans include expanding the dataset by
incorporating a larger number of images and introducing
additional animal categories.
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