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Overview Kitchen Scenes Dataset

Contributions:

* A new RGB-D dataset of cluttered kitchen
scenes, annotated in both 2D and 3D, for
detection and recognition of hand-held
objects in realistic settings. Some objects
were taken from the BigBird dataset [1].
URL: http://cs.gmu.edu/~robot/gmu-
kitchens.html

Procedure:

* Collected the scenes with Kinect V2 (1920x1080).

* Sparse reconstructions are created with the latest
structure from motion (SfM) software COLMAP.

* Dense point clouds are created using the estimated
camera poses to project all points to the world
coordinate frame.

At

Contents:

* 9 RGB-D kitchen video sequences (6735 images).

* 10-15 object instances per scene, with 23 instances
in total.

* Bounding box annotations for all objects.

* 3D point labeling for each scene.

Comparison to WRGB-D|2]

*A multiview object proposal generation
method which uses only 3D information.

* Detection baselines that investigate how
different training strategies can affect the
performance of CNNSs.

Multiview Object Proposals

Object Detection
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2) Turntable background: Same as (1) augmented with
images superimposed on random backgrounds.

3) HMP Folds: Scenes are split into three training-test folds
and HMP|[2] is used.

4) CNN Folds: Same as (3) but we train a CNN instead of
HMP. Baselines (1),(2),(4), train a CNN.

surfaces from the dense
point cloud.

2) Mean-shift clustering of
remaining points in
multiple ranges.

3) Cuboid fitting for removing
outlier points.

Table 2: Performance of the single-view proposal genera-
tion algorithm on the WRGB-D[2] and our Kitchen Scene
dataset.

Table 4: Object detection results for the WRGB-D [2] fol-
lowing the Turntable baseline.

Conclusions

* Multiview 3D object proposals outperform singleview 3D
proposals and are comparable to established proposal techniques.
* Training on similar backgrounds as the test set leads to much
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Table 3: Average precision (%) results for the object detection baselines on the kitchen scenes dataset.
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acquire. Training on random backgrounds helps just slightly,
which suggests that more sophisticated approaches are needed.
 Comparative experiments on the WRGB-D [2] show that the
Kitchen scenes dataset is more challenging.
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